We model non-stationary volume-price distributions with a log-normal distribution and collect the time series of its two parameters. The time series of the two parameters are shown to be stationary and Markov-like and consequently can be modelled with Langevin equations, which are derived directly from their series of values. Having the evolution equations of the log-normal parameters, we reconstruct the statistics of the first moments of volume-price distributions which fit well the empirical data. Finally, the proposed framework is general enough to study other non-stationary stochastic variables in other research fields, namely, biology, medicine, and geology.

1.
C.
Beck
,
Anomalous Transport
(
Wiley-VCH Verlag GmbH and Co. KGaA
,
2008
).
2.
P.
Rocha
,
F.
Raischel
,
J.
Boto
, and
P.
Lind
,
Phys. Rev. E
93
,
052122
(
2016
).
3.
S.
Camargo
,
S.
Queirós
, and
C.
Anteneodo
,
Eur. Phys. J. B
86
,
159
(
2013
).
4.
R.
Friedrich
,
J.
Peinke
,
M.
Sahimi
, and
M.
Tabar
,
Phys. Rep.
506
,
87
(
2011
).
5.
P.
Rocha
,
F.
Raischel
,
J.
Cruz
, and
P.
Lind
, in
3rd SMTDA Conference Proceedings
(
2015
), pp.
619
627
.
6.
P.
Rocha
,
F.
Raischel
,
J.
Boto
, and
P.
Lind
,
J. Phys.: Conf. Ser.
574
,
012148
(
2014
).
8.
C.
Forbes
,
M.
Evans
,
N.
Hastings
, and
B.
Peacock
,
Statistical Distributions
(
Wiley & Sons
,
New Jersey
,
2011
).
9.
H.
Risken
,
Fokker-Planck Equation
(
Springer
,
Berlin
,
1984
).
10.
P.
Rinn
,
P.
Lind
,
M.
Wächter
, and
J.
Peinke
,
J. Open Res. Softw.
4
,
e34
(
2016
).
11.
V.
Vasconcelos
,
F.
Raischel
,
D.
Kleinhans
,
J.
Peinke
,
M.
Wächter
,
M.
Haase
, and
P.
Lind
,
Phys. Rev. E
84
,
031103
(
2011
).
12.
C.
Alexander
,
Market Models
(
Wiley & Sons
,
New Jersey
,
2001
).
13.
H.
Kantz
and
T.
Schreiber
,
Nonlinear Time Series Analysis
(
Cambridge University Press
,
Cambridge
,
1997
).
14.
W.
Press
,
S.
Teukolsky
,
W.
Vetterling
, and
B.
Flannery
,
Numerical Recipes: The Art of Scientific Computing
(
Cambridge University Press
,
Cambridge
,
2007
).
15.
J.-F.
Bouchard
and
M.
Potters
,
Theory of Financial Risk and Derivative Pricing
(
Cambridge University Press
,
Cambridge
,
2009
).
16.
P.
Cizek
,
W.
Härdle
, and
R.
Weron
,
Statistical Tools for Finance and Insurance
(
Springer
,
Heidelberg
,
2011
).
You do not currently have access to this content.