We address the stability and dynamics of eigenmodes in linearly shaped strings (dimers, trimers, tetramers, and pentamers) built of droplets in a binary Bose-Einstein condensate (BEC). The binary BEC is composed of atoms in two pseudo-spin states with attractive interactions, dressed by properly arranged laser fields, which induce the (pseudo-) spin-orbit (SO) coupling. We demonstrate that the SO-coupling terms help to create eigenmodes of particular types in the strings. Dimer, trimer, and pentamer eigenmodes of the linear system, which correspond to the zero eigenvalue (EV, alias chemical potential) extend into the nonlinear ones, keeping an exact analytical form, while tetramers do not admit such a continuation, because the respective spectrum does not contain a zero EV. Stability areas of these modes shrink with the increasing nonlinearity. Besides these modes, other types of nonlinear states, which are produced by the continuation of their linear counterparts corresponding to some nonzero EVs, are found in a numerical form (including ones for the tetramer system). They are stable in nearly entire existence regions in trimer and pentamer systems, but only in a very small area for the tetramers. Similar results are also obtained, but not displayed in detail, for hexa- and septamers.

1.
H.
Sakaguchi
,
S.
Shinnomoto
, and
Y.
Kuramoto
, “
Local and global self-entrainment in oscillator lattices
,”
Prog. Theor. Phys.
77
,
1005
1010
(
1987
);
H.
Sakaguchi
, “
Cooperative phenomena in coupled oscillator systems under external fields
,”
Prog. Theor. Phys.
79
,
39
46
(
1988
).
2.
S. H.
Strogatz
, “
Exploring complex networks
,”
Nature
410
,
268
276
(
2001
);
[PubMed]
R.
Albert
and
A. L.
Barabasi
, “
Statistical mechanics of complex networks
,”
Rev. Mod. Phys.
74
,
47
97
(
2002
);
A.
Arenas
,
A.
Diaz-Guilera
,
J.
Kurths
,
Y.
Moreno
, and
C. S.
Zhou
, “
Synchronization in complex networks
,”
Phys. Rep.
469
,
93
153
(
2008
);
M.
Barthelemy
, “
Spatial networks
,”
Phys. Rep.
499
,
1
101
(
2011
).
3.
M. L.
Chiofalo
,
M.
Polini
, and
M. P.
Tosi
, “
Collective excitations of a periodic Bose condensate in the Wannier representation
,”
Eur. Phys. J. D
11
,
371
378
(
2000
);
A.
Smerzi
,
A.
Trombettoni
,
P. G.
Kevrekidis
, and
A. R.
Bishop
, “
Dynamical superfluid-insulator transition in a chain of weakly coupled Bose-Einstein condensates
,”
Phys. Rev. Lett.
89
,
170402
(
2002
);
[PubMed]
G. L.
Alfimov
,
P. G.
Kevrekidis
,
V. V.
Konotop
, and
M.
Salerno
, “
Wannier functions analysis of the nonlinear Schrödinger equation with a periodic potential
,”
Phys. Rev. E
66
,
046608
(
2002
);
A.
Smerzi
and
A.
Trombettoni
, “
Nonlinear tight-binding approximation for Bose-Einstein condensates in a lattice
,”
Phys. Rev. A
68
,
023613
(
2003
);
G. H.
Chong
,
W. H.
Hai
, and
Q. T.
Xie
, “
Controlling chaos in a weakly coupled array of Bose-Einstein condensates
,”
Phys. Rev. E
71
,
016202
(
2005
);
G. P.
Zheng
,
J. Q.
Liang
, and
W. M.
Liu
, “
Phase diagram of two-species Bose-Einstein condensates in an optical lattice
,”
Phys. Rev. A
71
,
053608
(
2005
);
S.
Gopalakrishnan
,
B. L.
Lev
, and
P. M.
Goldbart
, “
Atom-light crystallization of Bose-Einstein condensates in multimode cavities: Nonequilibrium classical and quantum phase transitions, emergent lattices, supersolidity, and frustration
,”
Phys. Rev. A
82
,
043612
(
2010
).
4.
D.
Jaksch
,
C.
Bruder
,
J. I.
Cirac
,
C. W.
Gardiner
, and
P.
Zoller
, “
Cold bosonic atoms in optical lattices
,”
Phys. Rev. Lett.
81
,
3108
3111
(
1998
);
M.
Greiner
,
O.
Mandel
,
T.
Esslinger
,
T. W.
Hansch
, and
I.
Bloch
, “
Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms
,”
Nature
415
,
39
44
(
2002
);
[PubMed]
T.
Stoferle
,
H.
Moritz
,
C.
Schori
,
M.
Kohl
, and
T.
Esslinger
, “
Transition from a strongly interacting 1D superfluid to a Mott insulator
,”
Phys. Rev. Lett.
92
,
130403
(
2004
);
[PubMed]
F.
Gerbier
,
A.
Widera
,
S.
Folling
,
O.
Mandel
,
T.
Gericke
, and
I.
Bloch
, “
Phase coherence of an atomic Mott insulator
,”
Phys. Rev. Lett.
95
,
050404
(
2005
);
[PubMed]
R.
Fulton
,
A. I.
Bishop
,
M. N.
Shneider
, and
P. F.
Barker
, “
Controlling the motion of cold molecules with deep periodic optical potentials
,”
Nat. Phys.
2
,
465
468
(
2006
).
5.
T.
Schumm
,
S.
Hofferberth
,
L. M.
Andersson
,
S.
Wildermuth
,
S.
Groth
,
I.
Bar-Joseph
,
J.
Schmiedmayer
, and
P.
Krüger
, “
Matter-wave interferometry in a double well on an atom chip
,”
Nat. Phys.
1
,
57
62
(
2005
).
6.
D. L.
Campbell
,
G.
Juzeliunas
, and
I. B.
Spielman
, “
Realistic Rashba and Dresselhaus spin-orbit coupling for neutral atoms
,”
Phys. Rev. A
84
,
025602
(
2001
).
7.
Y. J.
Lin
,
K.
Jimenez-Garcia
, and
I. B.
Spielman
, “
Spin-orbit-coupled Bose-Einstein condensates
,”
Nature
471
,
83
(
2011
).
8.
V.
Galitski
and
I. B.
Spielman
, “
Spin-orbit coupling in quantum gases
,”
Nature
494
,
49
(
2013
).
9.
J.-Y.
Zhang
,
J.-Y.
Zhang
,
S.-C.
Ji
,
Z.
Chen
,
L.
Zhang
,
Z.-D.
Du
,
B.
Yan
,
G.-S.
Pan
,
B.
Zhao
,
Y.
Deng
,
H.
Zhai
,
S.
Chen
, and
J.-W.
Pan
, “
Collective dipole oscillation of a spin-orbit coupled Bose-Einstein condensate
,”
Phys. Rev. Lett.
109
,
115301
(
2012
).
10.
C.
Schmidt-Hattenberger
,
R.
Mushall
,
U.
Trutschel
, and
F.
Lederer
, “
Nonlinear eigenmodes of a three-core fibre coupler
,”
Opt. Quantum Electron.
24
,
691
701
(
1992
).
11.
M. I.
Molina
and
G. P.
Tsironis
, “
Dynamics of self-trapping in the discrete nonlinear Schrödinger equation
,”
Physica D
65
,
267
(
1993
).
12.
N. N.
Akhmediev
and
A. V.
Buryak
, “
Soliton states and bifurcation phenomena in three-core nonlinear fiber couplers
,”
J. Opt. Soc. Am. B
11
,
804
809
(
1994
).
13.
J. C.
Eilbeck
,
G. P.
Tsironis
, and
S. K.
Turitsyn
, “
Stationary states in a doubly nonlinear trimer model of optical couplers
,”
Phys. Scr.
52
,
386
387
(
1995
).
14.
A. B.
Aceves
,
M.
Santagiustina
, and
C. De
Angelis
, “
Analytical study of nonlinear-optical pulse dynamics in arrays of linearly coupled waveguides
,”
J. Opt. Soc. Am. B
14
,
1807
1815
(
1997
).
15.
A. B.
Aceves
and
M.
Santagiustina
, “
Bistable and tristable soliton switching in collinear arrays of linearly coupled waveguides
,”
Phys. Rev. E
56
,
1113
1123
(
1997
).
16.
M.
Liu
and
K. S.
Chiang
, “
Nonlinear switching of ultrashort pulses in multicore fibers
,”
IEEE J. Quantum Electron.
47
,
1499
1505
(
2011
).
17.
J.
Hua
,
H.
Zhou
,
K. S.
Chiang
, and
S. R.
Xiao
, “
Modulation instabilities in equilateral three-core optical fibers
,”
J. Opt. Soc. Am. B
33
,
2357
2367
(
2016
).
18.
D.
Hennig
, “
The discrete self-trapping equation and the Painleve property
,”
J. Phys. A
25
,
1247
(
1992
).
19.
J. C.
Eilbeck
,
P. S.
Lomdahl
, and
A. C.
Scott
, “
The discrete self-trapping equation
,”
Physica D
16
,
318
(
1985
).
20.
J.
Larson
,
J.-P.
Martikainen
,
A.
Collin
, and
E.
Sjöqvist
, “
Spin-orbit-coupled Bose-Einstein condensate in a tilted optical lattice
,”
Phys. Rev. A
82
,
043620
(
2010
);
Y.
Zhang
and
Ch.
Zhang
, “
Bose-Einstein condensates in spin-orbit-coupled optical lattices: Flat bands and superfluidity
,”
Phys. Rev. A
87
,
023611
(
2013
);
Y. V.
Kartashov
,
V. V.
Konotop
,
D. A.
Zezyulin
, and
L.
Torner
, “
Bloch oscillations in optical and Zeeman lattices in the presence of spin-orbit coupling
,”
Phys. Rev. Lett.
117
,
215301
(
2016
).
[PubMed]
21.
J.-R.
Li
,
J.
Lee
,
W.
Huang
,
S.
Burchesky
,
B.
Shteynas
,
F. Ç.
Top
,
A. O.
Jamison
, and
W.
Ketterle
, “
A stripe phase with supersolid properties in spin–orbit-coupled Bose–Einstein condensates
,”
Nature
543
,
91
(
2017
).
22.
H.
Sakaguchi
and
B. A.
Malomed
, “
Discrete and continuum composite solitons in Bose-Einstein condensates with the Rashba spin-orbit coupling in one and two dimensions
,”
Phys. Rev. E
90
,
062922
(
2014
).
23.
M.
Salerno
and
F. Kh.
Abdullaev
, “
Symmetry breaking of localized discrete matter waves induced by spin–orbit coupling
,”
Phys. Lett. A
379
,
2252
(
2015
).
24.
R.
Citro
and
A.
Naddeo
, “
Spin-orbit coupled Bose-Einstein condensates in a double well
,”
Eur. Phys. J. Spec. Top.
224
,
503
518
(
2015
).
25.
P. P.
Beličev
,
G.
Gligorić
,
J.
Petrović
,
A.
Maluckov
,
Lj.
Hadžievski
, and
B. A.
Malomed
, “
Composite localized modes in discretized spin-orbit-coupled Bose-Einstein condensates
,”
J. Phys. B: At. Mol. Opt. Phys.
48
,
065301
(
2015
).
26.
T. L.
Ho
, “
Spinor Bose condensates in optical traps
,”
Phys. Rev. Lett.
81
,
742
745
(
1998
).
27.
P. G.
Kevrekidis
,
The Discrete Nonlinear Schrödinger Equation: Mathematical Analysis, Numerical Computations, and Physical Perspectives
(
Springer
,
Berlin/Heidelberg
,
2009
).
28.
G.
Gligorić
,
A.
Maluckov
,
Lj.
Hadžievski
, and
B. A.
Malomed
, “
Bright solitons in the one-dimensional discrete Gross-Pitaevskii equation with dipole-dipole interactions
,”
Phys. Rev. A
78
,
063615
(
2008
).
29.
D. A.
Zezyulin
and
V. V.
Konotop
, “
Stationary modes and integrals of motion in nonlinear lattices with a PT-symmetric linear part
,”
J. Phys. A
46
,
415301
(
2013
).
30.
P. J.
Martinez
,
L. M.
Floria
,
F.
Falo
, and
J. J.
Mazo
, “
Intrinsically localized chaos in discrete nonlinear extended systems
,”
Europhys. Lett.
45
,
444
449
(
1999
);
V. V.
Konotop
,
D. E.
Pelinovsky
, and
D. A.
Zezyulin
, “
Discrete solitons in PT -symmetric lattices
,”
Europhys. Lett.
100
,
56006
(
2012
).
31.
M.
Vakhitov
and
A.
Kolokolov
, “
Stationary solutions of the wave equation in a medium with nonlinearity saturation
,”
Radiophys. Quantum Electron.
16
,
783
789
(
1973
);
L.
Bergé
, “
Wave collapse in physics: Principles and applications to light and plasma waves
,”
Phys. Rep.
303
,
259
370
(
1998
).
You do not currently have access to this content.