The interplay of reaction and diffusion processes can trigger localized spatiotemporal patterns when two solutions containing separate reactants A and B of an oscillating reaction are put in contact. Using the Brusselator, a classical model for chemical oscillations, we show numerically that localized waves and Turing patterns as well as reaction-diffusion (RD) patterns due to an interaction between these two kinds of modes can develop in time around the reactive contact zone depending on the initial concentration of reactants and diffusion coefficients of the intermediate species locally produced. We further explore the possible hydrodynamic destabilization of an initially buoyantly stable stratification of such an A + B → oscillator system, when the chemical reaction provides a buoyant periodic forcing via localized density changes. Guided by the properties of the underlying RD dynamics, we predict new chemo-hydrodynamic instabilities on the basis of the dynamic density profiles which are here varying with the concentration of one of the intermediate species of the oscillator. Nonlinear simulations of the related reaction-diffusion-convection equations show how the active coupling between the localized oscillatory kinetics and buoyancy-driven convection can induce pulsatile convective fingering and pulsatile plumes as well as rising or sinking Turing spots, depending on the initial concentration of the reactants and their contribution to the density.

1.
P.
Glansdorff
and
I.
Prigogine
,
Thermodynamics of Structure, Stability and Fluctuations
(
Wiley
,
New York
,
1971
).
2.
G.
Nicolis
and
I.
Prigogine
,
Self-Organization in Nonequilibrium Systems
(
Wiley
,
New York
,
1977
).
3.
I.
Prigogine
and
R.
Lefever
, “
Symmetry breaking instabilities in dissipative systems. II
,”
J. Chem. Phys.
48
,
1695
1700
(
1968
).
4.
R.
Lefever
and
G.
Nicolis
, “
Chemical instabilities and sustained oscillations
,”
J. Theor. Biol.
30
,
267
284
(
1971
).
5.
R.
Lefever
,
G.
Nicolis
, and
P.
Borckmans
, “
The Brusselator: It does oscillate all the same
,”
J. Chem. Soc., Faraday Trans. 1
84
,
1013
1023
(
1988
).
6.
B. P.
Belousov
, “
A periodic reaction and its mechanism
,” in
Sbornik Referatov Po Radiatsonno Meditsine
(
Medgiz
,
Moscow
,
1958
), pp.
145
147
.
7.
A. N.
Zaikin
and
A. M.
Zhabotinsky
, “
Concentration wave propagation in two-dimensional liquid-phase self-oscillating system
,”
Nature
225
,
535
537
(
1970
).
8.
V.
Castets
,
E.
Dulos
,
J.
Boissonade
, and
P.
De Kepper
, “
Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern
,”
Phys. Rev. Lett.
64
,
2953
2956
(
1990
).
9.
A.
De Wit
, “
Spatial patterns and spatiotemporal dynamics in chemical systems
,”
Adv. Chem. Phys.
109
,
435
513
(
1999
).
10.
M.
Herschkowitz-Kaufman
and
G.
Nicolis
, “
Localized spatial structures and nonlinear chemical waves in dissipative systems
,”
J. Chem. Phys.
56
,
1890
1895
(
1972
).
11.
J.
Boissonade
, “
Stationary structure induced along a reaction-diffusion front by a Turing symmetry breaking instability
,”
J. Phys. France
49
,
541
546
(
1988
).
12.
G.
Dewel
and
P.
Borckmans
, “
Effects of slow spatial variations on dissipative structures
,”
Phys. Lett. A
138
,
189
192
(
1989
).
13.
P.
Borckmans
,
A.
De Wit
, and
G.
Dewel
, “
Competition in ramped Turing structures
,”
Phys. A: Stat. Mech. Appl.
188
,
137
157
(
1992
).
14.
G.
Dewel
,
P.
Borckmans
,
A.
De Wit
,
B.
Rudovics
,
J.-J.
Perraud
,
E.
Dulos
,
J.
Boissonade
, and
P.
De Kepper
, “
Pattern selection and localized structures in reaction-diffusion systems
,”
Physica A
213
,
181
198
(
1995
).
15.
I.
Lengyel
,
S.
Kádár
, and
I. R.
Epstein
, “
Quasi-two-dimensional Turing patterns in an imposed gradient
,”
Phys. Rev. Lett.
69
,
2729
2732
(
1992
).
16.
E.
Dulos
,
P.
Davies
,
B.
Rudovics
, and
P.
De Kepper
, “
From quasi-2D to 3D Turing patterns in ramped systems
,”
Physica D
98
,
53
66
(
1996
).
17.
S.
Setayeshgar
and
M. C.
Cross
, “
Turing instability in a boundary-fed system
,”
Phys. Rev. E
58
,
4485
4500
(
1998
).
18.
P.
De Kepper
,
E.
Dulos
,
J.
Boissonade
,
A.
De Wit
,
G.
Dewel
, and
P.
Borckmans
, “
Reaction diffusion patterns in confined chemical systems
,”
J. Stat. Phys.
101
,
495
508
(
2000
).
19.
Z.
Noszticzius
,
W.
Horsthemke
,
W. D.
McCormick
,
H.
Swinney
, and
W. Y.
Tam
, “
Sustained chemical waves in an annular gel reactor: A chemical pinwheel
,”
Nature
329
,
619
620
(
1987
).
20.
E.
Dulos
,
J.
Boissonade
, and
P.
De Kepper
, “
Dynamics and morphology of sustained two-dimensional wave trains
,”
Physica A
188
,
120
131
(
1992
).
21.
J.-J.
Perraud
,
A.
De Wit
,
E.
Dulos
,
P.
De Kepper
,
G.
Dewel
, and
P.
Borckmans
, “
One-dimensional “spirals”: Novel asynchronous chemical wave sources
,”
Phys. Rev. Lett.
71
,
1272
1275
(
1993
).
22.
A.
De Wit
,
D.
Lima
,
G.
Dewel
, and
P.
Borckmans
, “
Spatiotemporal dynamics near a codimension-two point
,”
Phys. Rev. E
54
,
261
271
(
1996
).
23.
L.
Yang
,
M.
Dolnik
,
A. M.
Zhabotinsky
, and
I. R.
Epstein
, “
Pattern formation arising from interactions between Turing and wave instabilities
,”
J. Chem. Phys.
117
,
7259
7265
(
2002
).
24.
J. C.
Tzou
,
Y.-P.
Ma
,
A.
Bayliss
,
B. J.
Matkowsky
, and
V. A.
Volpert
, “
Homoclinic snaking near a codimension-two Turing-Hopf bifurcation point in the Brusselator model
,”
Phys. Rev. E
87
,
022908
(
2013
).
25.
M. A.
Budroni
and
A.
De Wit
, “
Localized stationary and traveling reaction-diffusion patterns in a two-layer A+B oscillator system
,”
Phys. Rev. E
93
,
062207
(
2016
).
26.
L.
Gálfi
and
Z.
Rácz
, “
Properties of the reaction front in an A+BC type reaction-diffusion process
,”
Phys. Rev. A
38
,
3151
3154
(
1988
).
27.
A.
De Wit
, “
Chemo-hydrodynamic patterns in porous media
,”
Philos. Trans. R. Soc. A
374
,
20150419
(
2016
).
28.
K.
Eckert
and
A.
Grahn
, “
Plume and finger regimes driven by an exothermic interfacial reaction
,”
Phys. Rev. Lett.
82
,
4436
4439
(
1999
).
29.
C.
Almarcha
,
P. M. J.
Trevelyan
,
P.
Grosfils
, and
A.
De Wit
, “
Chemically driven hydrodynamic instabilities
,”
Phys. Rev. Lett.
104
,
044501
(
2010
).
30.
C.
Almarcha
,
Y.
R'Honi
,
Y.
De Decker
,
P. M. J.
Trevelyan
,
K.
Eckert
, and
A.
De Wit
, “
Convective mixing induced by acid base reactions
,”
J. Phys. Chem. B
115
,
9739
9744
(
2011
).
31.
K.
Eckert
,
M.
Acker
,
R.
Tadmouri
, and
V.
Pimienta
, “
Chemo-Marangoni convection driven by an interfacial reaction: Pattern formation and kinetics
,”
Chaos
22
,
037112
(
2012
).
32.
L.
Lemaigre
,
M. A.
Budroni
,
L. A.
Riolfo
,
P.
Grosfils
, and
A.
De Wit
, “
Asymmetric Rayleigh-Taylor and double-diffusive fingers in reactive systems
,”
Phys. Fluids
25
,
014103
(
2013
).
33.
P. M. J.
Trevelyan
,
C.
Almarcha
, and
A.
De Wit
, “
Buoyancy-driven instabilities around miscible A+BC reaction fronts: A general classification
,”
Phys. Rev. E
91
,
023001
(
2015
).
34.
M. A.
Budroni
,
M.
Rustici
, and
E.
Tiezzi
, “
On the origin of chaos in the Belousov-Zhabotinsky reaction in closed and unstirred reactors
,”
Math. Modell. Nat. Phenom.
6
,
226
242
(
2011
).
35.
H.
Miike
,
T.
Sakurai
,
A.
Nomura
, and
S. C.
Müller
, “
Chemically driven convection in the Belousov-Zhabotinsky reaction-evolutionary pattern dynamics
,”
Forma
30
,
S33
S53
(
2015
).
36.
M. A.
Budroni
,
M.
Masia
,
M.
Rustici
,
N.
Marchettini
,
V.
Volpert
, and
P. C.
Cresto
, “
Ruelle-Takens-Newhouse scenario in reaction-diffusion-convection system
,”
J. Chem. Phys.
128
,
111102
(
2008
).
37.
Y.
Shi
and
E.
Kerstin
, “
Orientation-dependent hydrodynamic instabilities from chemo-Marangoni cells to large scale interfacial deformations
,”
Chin. J. Chem. Eng.
15
,
748
753
(
2007
).
38.
M. A.
Budroni
,
L. A.
Riolfo
,
L.
Lemaigre
,
F.
Rossi
,
M.
Rustici
, and
A.
De Wit
, “
Chemical control of hydrodynamic instabilities in partially miscible two-layer systems
,”
J. Phys. Chem. Lett.
5
,
875
881
(
2014
).
39.
D. M.
Escala
,
M. A.
Budroni
,
J.
Carballido-Landeira
,
A.
De Wit
, and
A. P.
Muñuzuri
, “
Self-organized traveling chemo-hydrodynamic fingers triggered by a chemical oscillator
,”
J. Phys. Chem. Lett.
5
,
413
418
(
2014
).
40.
M. A.
Budroni
,
L.
Lemaigre
,
D. M.
Escala
,
A. P.
Muñuzuri
, and
A.
De Wit
, “
Spatially localized chemical patterns around an A+B oscillator front
,”
J. Phys. Chem. A
120
,
851
860
(
2016
).
41.
D. W.
Peaceman
and
H. H.
Rachford
, “
The numerical solution of parabolic and elliptic differential equations
,”
J. Soc. Ind. Appl. Math.
3
,
28
(
1955
).
42.
J. A.
Pojman
and
I. R.
Epstein
, “
Convective effects on chemical waves. 1. mechanisms and stability criteria
,”
J. Phys. Chem.
94
,
4966
4972
(
1990
).
43.
M. A.
Budroni
,
M.
Masia
,
M.
Rustici
,
N.
Marchettini
, and
V.
Volpert
, “
Bifurcations in spiral tip dynamics induced by natural convection in the Belousov-Zhabotinsky reaction
,”
J. Chem. Phys.
130
,
024902
(
2009
).
44.
F.
Rossi
,
M. A.
Budroni
,
N.
Marchettini
, and
J.
Carballido-Landeira
, “
Segmented waves in a reaction-diffusion-convection system
,”
Chaos
22
,
037109
(
2012
).
45.
D. A.
Vasquez
,
J. W.
Wilder
, and
B. F.
Edwards
, “
Convective Turing patterns
,”
Phys. Rev. Lett.
71
,
1538
1541
(
1993
).
46.
J. N.
Demas
and
D.
Diemente
, “
An oscillating chemical reaction with a luminescent indicator
,”
J. Chem. Educ.
50
,
357
(
1973
).
47.
P. L.
Gentili
,
M.
Dolnik
, and
I.
Epstein
, “
Photochemical oscillator: Colored hydrodynamic oscillations and waves in a photochromic system
,”
J. Phys. Chem. C
118
,
598
608
(
2014
).
48.
L.
Lemaigre
, “
Convective patterns triggered by chemical reactions, dissolution and cross-diffusion: An experimental study
,” Ph.D. thesis (
Université libre de Bruxelles
,
2016
).
You do not currently have access to this content.