Synchronization is a very generic process commonly observed in a large variety of dynamical systems which, however, has been rarely addressed in systems with low dissipation. Using the Rössler, the Lorenz 84, and the Sprott A systems as paradigmatic examples of strongly, weakly, and non-dissipative chaotic systems, respectively, we show that a parameter or frequency mismatch between two coupled such systems does not affect the synchronizability and the underlying structure of the joint attractor in the same way. By computing the Shannon entropy associated with the corresponding recurrence plots, we were able to characterize how two coupled nonidentical chaotic oscillators organize their dynamics in different dissipation regimes. While for strongly dissipative systems, the resulting dynamics exhibits a Shannon entropy value compatible with the one having an average parameter mismatch, for weak dissipation synchronization dynamics corresponds to a more complex behavior with higher values of the Shannon entropy. In comparison, conservative dynamics leads to a less rich picture, providing either similar chaotic dynamics or oversimplified periodic ones.

1.
O. E.
Rössler
, “
An equation for continuous chaos
,”
Phys. Lett. A
57
(
5
),
397
398
(
1976
).
2.
R.
Gilmore
and
M.
Lefranc
,
The Topology of Chaos
(
Wiley
,
2002
).
3.
C.
Letellier
,
E.
Roulin
, and
O. E.
Rössler
, “
Inequivalent topologies of chaos in simple equations
,”
Chaos, Solitons Fractals
28
,
337
360
(
2006
).
4.
M.
Rosalie
and
C.
Letellier
, “
Systematic template extraction from chaotic attractors: I. Genus-one attractors with an inversion symmetry
,”
J. Phys. A
46
,
375101
(
2013
).
5.
J.
Plumecoq
and
M.
Lefranc
, “
From template analysis to generating partitions I: Periodic orbits, knots and symbolic encodings
,”
Physica D
144
,
231
258
(
2000
).
6.
H.
Poincaré
,
Les Méthodes Nouvelles de la Mécanique Céleste
(
Gauthier-Vilard
,
Paris
,
1899
), Vol.
3
.
7.
P.
Cvitanović
, “
Periodic orbits as the skeleton of classical and quantum chaos
,”
Physica D
51
,
138
151
(
1991
).
8.
G. B.
Mindlin
and
R.
Gilmore
, “
Topological analysis and synthesis of chaotic time series
,”
Physica D
58
,
229
242
(
1992
).
9.
A. A.
King
,
W. M.
Schaffer
,
C.
Gordon
,
J.
Treat
, and
M.
Kot
, “
Weakly dissipative predator-prey systems
,”
Bull. Math. Biol.
58
(
5
),
835
859
(
1996
).
10.
P.
Glendinning
, “
Inaccessible attractors of weakly dissipative systems
,”
Nonlinearity
10
(
2
),
507
522
(
1997
).
11.
A.
Celletti
, “
Weakly dissipative systems in celestial mechanics
,”
Lect. Notes Phys.
729
,
67
90
(
2007
).
12.
D. S.
Almeida Júnior
,
M. L.
Santos
, and
J. E.
Muñoz Rivera
, “
Stability to weakly dissipative Timoshenko systems
,”
Math. Methods Appl. Sci.
36
(
14
),
1965
1976
(
2013
).
13.
R. F.
Nagaev
, “
General problem of synchronization in an almost conservative system
,”
J. Appl. Math. Mech.
29
(
5
),
801
809
(
1965
).
14.
L.
Zonghua
and
C.
Shigang
, “
Synchronization of a conservative map
,”
Phys. Rev. E
56
(
2
),
1585
1589
(
1997
).
15.
S.
Vaidyanathan
and
S.
Pakiriswam
, “
A novel conservative chaotic system and its generalized projective synchronization via adaptive control
,”
J. Eng. Sci. Technol. Rev.
8
(
2
),
52
60
(
2015
).
16.
O. I.
Olusola
,
U. E.
Vincent
, and
A. N.
Njah
, “
Synchronization, multistability and basin crisis in coupled pendula
,”
J. Sound Vib.
329
,
443
456
(
2010
).
17.
A. N.
Pisarchik
and
U.
Feudel
, “
Control of multistability
,”
Phys. Rep.
540
,
167
218
(
2014
).
18.
H. B.
Lin
,
Elementary Symbolic Dynamics and Chaos in Dissipative Systems
(
World Scientific Publishing
,
1989
).
19.
C.
Letellier
,
P.
Dutertre
, and
B.
Maheu
, “
Unstable periodic orbits and templates of the Rössler system: Toward a systematic topological characterization
,”
Chaos
5
(
1
),
271
282
(
1995
).
20.
S.
Mangiarotti
,
M.
Peyre
, and
M.
Huc
, “
A chaotic model for the epidemic of Ebola virus disease in West Africa (2013-2016)
,”
Chaos
26
(
11
),
113112
(
2016
).
21.
C.
Letellier
, “
Estimating the Shannon entropy: Recurrence plots versus symbolic dynamics
,”
Phys. Rev. Lett.
96
,
254102
(
2006
).
22.
L. L.
Trulla
,
A.
Giuliani
,
J. P.
Zbilut
, and
C. L.
Webber
, Jr.
, “
Recurrence quantification analysis of the logistic equation with transients
,”
Phys. Lett. A
223
,
255
260
(
1996
).
23.
R.
Naeck
,
D.
Bounoiare
,
U. S.
Freitas
,
H.
Rabarimanantsoa
,
A.
Portmann
,
F.
Portier
,
A.
Cuvelier
,
J.-F.
Muir
, and
C.
Letellier
, “
Dynamics underlying patient-ventilator interactions during nocturnal noninvasive ventilation
,”
Int. J. Bifurcation Chaos
22
(
2
),
1250030
(
2012
).
24.
E. N.
Lorenz
, “
Irregularity: A fundamental property of the atmosphere
,”
Tellus A
36
,
98
110
(
1984
).
25.
A.
Shil'nikov
,
G.
Nicolis
, and
C.
Nicolis
, “
Bifurcation and predictability analysis of a low-order atmospheric circulation model
,”
Int. J. Bifurcation Chaos
5
(
6
),
1701
1711
(
1995
).
26.
J. G.
Freire
,
C.
Bonatto
,
C. C.
DaCamara
, and
J. A.
Gallas
, “
Multistability, phase diagrams, and intransitivity in the Lorenz-84 low-order atmospheric circulation model
,”
Chaos
18
(
3
),
033121
(
2008
).
27.
L.
van Veen
, “
Baroclinic flow and the Lorenz-84 model
,”
Int. J. Bifurcation Chaos
13
(
8
),
2117
2139
(
2003
).
28.
H.
Wang
,
Y.
Yu
, and
G.
Wen
, “
Dynamical analysis of the Lorenz-84 atmospheric circulation model
,”
J. Appl. Math.
2014
,
296279
.
29.
J. C.
Sprott
, “
Some simple chaotic flows
,”
Phys. Rev. E
50
(
2
),
647
650
(
1994
).
30.
L. M.
Pecora
and
T. L.
Carroll
, “
Synchronization in chaotic systems
,”
Phys. Rev. Lett.
64
(
8
),
821
824
(
1990
).
31.
S.
Boccaletti
,
J.
Kurths
,
G.
Osipov
,
D. L.
Valladares
, and
C. S.
Zhou
, “
The synchronization of chaotic systems
,”
Phys. Rep.
366
(
1-2
),
1
101
(
2002
).
32.
L. M.
Pecora
and
T. L.
Carroll
, “
Master stability functions for synchronized coupled systems
,”
Phys. Rev. Lett.
80
(
10
),
2109
2112
(
1998
).
33.
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D.-U.
Hwang
, “
Complex networks: Structure and dynamics
,”
Phys. Rep.
424
,
175
308
(
2006
).
34.
I.
Sendiña-Nadal
,
S.
Boccaletti
, and
C.
Letellier
, “
Observability coefficients for predicting the class of synchronizability from the algebraic structure of the local oscillators
,”
Phys. Rev. E
94
,
042205
(
2016
).
35.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
2003
).
36.
S.
Boccaletti
,
A. A.
Koronovsky
,
D. I.
Trubetskov
,
A. E.
Khramov
, and
A. E.
Khramova
, “
Stability of the synchronous state of an arbitrary network of coupled elements
,”
Radiophys. Quantum Electron.
49
(
10
),
826
833
(
2006
).
37.
S.
Cang
,
A.
Wu
,
Z.
Wang
, and
Z.
Chen
, “
On a 3-D generalized Hamiltonian model with conservative and dissipative chaotic flows
,”
Chaos, Solitons Fractals
99
,
45
51
(
2017
).
38.

The time averaged trace is calculated over 80 000 points taken along a trajectory in the chaotic attractor.

39.

The visited volume V is approximated by counting the pixels visited by 80 000 intersections with the Poincaré section (400 × 400 pixels2).

You do not currently have access to this content.