In dynamical systems, the full stability of fixed point solutions is determined by their basins of attraction. Characterizing the structure of these basins is, in general, a complicated task, especially in high dimensionality. Recent works have advocated to quantify the non-linear stability of fixed points of dynamical systems through the relative volumes of the associated basins of attraction [Wiley et al., Chaos 16, 015103 (2006) and Menck et al. Nat. Phys. 9, 89 (2013)]. Here, we revisit this issue and propose an efficient numerical method to estimate these volumes. The algorithm first identifies stable fixed points. Second, a set of initial conditions is considered that are randomly distributed at the surface of hypercubes centered on each fixed point. These initial conditions are dynamically evolved. The linear size of each basin of attraction is finally determined by the proportion of initial conditions which converge back to the fixed point. Armed with this algorithm, we revisit the problem considered by Wiley et al. in a seminal paper [Chaos 16, 015103 (2006)] that inspired the title of the present manuscript and consider the equal-frequency Kuramoto model on a cycle. Fixed points of this model are characterized by an integer winding number q and the number n of oscillators. We find that the basin volumes scale as (14q/n)n, contrasting with the Gaussian behavior postulated in the study by Wiley et al.. Finally, we show the applicability of our method to complex models of coupled oscillators with different natural frequencies and on meshed networks.

1.
D. A.
Wiley
,
S. H.
Strogatz
, and
M.
Girvan
,
Chaos
16
,
015103
(
2006
).
2.
P. J.
Menck
,
J.
Heitzig
,
N.
Marwan
, and
J.
Kurths
,
Nat. Phys.
9
,
89
(
2013
).
3.
E.
Ott
,
Chaos in Dynamical Systems
, 2nd ed. (
Cambridge University Press
,
2002
).
4.
S. H.
Strogatz
,
Sync: The Emerging Science of Spontaneous Order
, Penguin Press Science Series (
Penguin Adult
,
2004
).
6.
J. A.
Acebrón
,
L. L.
Bonilla
,
C. J.
Pérez Vicente
,
F.
Ritort
, and
R.
Spigler
,
Rev. Mod. Phys.
77
,
137
(
2005
).
7.
F.
Dörfler
and
F.
Bullo
,
Automatica
50
,
1539
(
2014
).
8.
Y.
Kuramoto
, “Lecture notes in physics,” in
International Symposium on Mathematical Problems in Theoretical Physics
, edited by
H.
Araki
(
Springer
,
Berlin, Heidelberg
,
1975
), Vol. 39, pp.
420
422
.
9.
Y.
Kuramoto
,
Prog. Theor. Phys. Suppl.
79
,
223
(
1984
).
10.
D.
Aeyels
and
J. A.
Rogge
,
Prog. Theor. Phys.
112
,
921
(
2004
).
11.
R. E.
Mirollo
and
S. H.
Strogatz
,
Physica D
205
,
249
(
2005
).
12.
M.
Verwoerd
and
O.
Mason
,
SIAM J. Appl. Dyn. Syst.
7
,
134
(
2008
).
13.
G. B.
Ermentrout
,
J. Math. Biol.
22
,
1
(
1985
).
14.
J. L.
van Hemmen
and
W. F.
Wreskinski
,
J. Stat. Phys.
72
,
145
(
1993
).
15.
K.
Wiesenfeld
,
P.
Colet
, and
S. H.
Strogatz
,
Phys. Rev. Lett.
76
,
404
(
1996
).
16.
Y.
Kuramoto
,
Chemical Oscillations, Waves and Turbulence
, Springer Series in Synergetics (
Springer
,
Berlin Heidelberg
,
1984
), Vol.
19
.
17.
H.
Sompolinsky
,
D.
Golomb
, and
D.
Kleinfeld
,
Phys. Rev. A
43
,
6990
(
1991
).
18.
F.
Dörfler
,
M.
Chertkov
, and
F.
Bullo
,
Proc. Natl. Acad. Sci. U.S.A.
110
,
2005
(
2013
).
19.
A. M.
Lyapunov
, “
The general problem of the stability of motion
,” Ph.D. thesis (
University of Kharkov
,
1892
).
20.
A. M.
Lyapunov
,
Int. J. Control
55
,
531
(
1992
).
21.
M.
Pai
,
Power System Stability: Analysis by the Direct Method of Lyapunov
(
North-Holland Publishing Company
,
1981
).
22.
H.-D.
Chiang
and
J. S.
Thorp
,
IEEE Trans. Autom. Control
34
,
1229
(
1989
).
23.
P.
Schultz
,
P. J.
Menck
,
J.
Heitzig
, and
J.
Kurths
,
New J. Phys.
19
,
023005
(
2017
).
24.
F.
Dörfler
and
F.
Bullo
, in
American Control Conference (ACC), 2011
(IEEE,
2011
), pp.
3239
3244
.
25.
A. J.
Korsak
,
IEEE Trans. Power Appar. Syst.
91
,
1093
(
1972
).
26.
R. K.
Pathria
and
P. D.
Beale
,
Statistical Mechanics
, 3rd ed. (
Elsevier
,
2011
).
27.
S.-Y.
Ha
and
M.-J.
Kang
,
SIAM J. Appl. Math.
72
,
1549
(
2012
).
28.
M.
Mézard
,
G.
Parisi
, and
M. A.
Virasoro
,
Spin Glass Theory and Beyond
(
World Scientific Publishing Co. Pte. Ltd.
,
1987
).
29.
R.
Fazio
and
H.
van der Zant
,
Phys. Rep.
355
,
235
(
2001
).
30.
R.
Delabays
,
T.
Coletta
, and
P.
Jacquod
,
J. Math. Phys.
57
,
032701
(
2016
).
31.
D.
Manik
,
M.
Timme
, and
D.
Witthaut
,
Chaos
27
,
083123
(
2017
).
33.
34.
R.
Gilmore
,
Catastrophe Theory for Scientists and Engineers
(
Wiley
,
New York
,
1981
).
35.
T.
Coletta
,
R.
Delabays
,
I.
Adagideli
, and
P.
Jacquod
,
New J. Phys.
18
,
103042
(
2016
).
36.
R.
Delabays
,
T.
Coletta
, and
P.
Jacquod
,
J. Math. Phys.
58
,
032703
(
2017
).
37.
R.
Genesio
,
M.
Tartaglia
, and
A.
Vicino
,
IEEE Trans. Autom. Control
30
,
747
(
1985
).
38.
E.
Najafi
,
R.
Babuka
, and
G. A. D.
Lopes
,
Nonlinear Dyn.
86
,
823
(
2016
).
39.
F.
Amato
,
C.
Cosentino
, and
A.
Merola
,
Automatica
43
,
2119
(
2007
).
40.
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
,
Science
238
,
632
(
1987
).
You do not currently have access to this content.