Observability is the property that enables recovering the state of a dynamical system from a reduced number of measured variables. In high-dimensional systems, it is therefore important to make sure that the variable recorded to perform the analysis conveys good observability of the system dynamics. The observability of a network of neuron models depends nontrivially on the observability of the node dynamics and on the topology of the network. The aim of this paper is twofold. First, to perform a study of observability using four well-known neuron models by computing three different observability coefficients. This not only clarifies observability properties of the models but also shows the limitations of applicability of each type of coefficients in the context of such models. Second, to study the emergence of phase synchronization in networks composed of neuron models. This is done performing multivariate singular spectrum analysis which, to the best of the authors' knowledge, has not been used in the context of networks of neuron models. It is shown that it is possible to detect phase synchronization: (i) without having to measure all the state variables, but only one (that provides greatest observability) from each node and (ii) without having to estimate the phase.

1.
L. A.
Aguirre
, “
A nonlinear correlation function for selecting the delay time in dynamical reconstructions
,”
Phys. Lett.
203A
(
2–3
),
88
94
(
1995
).
2.
L. A.
Aguirre
and
C.
Letellier
, “
Observability of multivariable differential embeddings
,”
J. Phys. A: Math. Gen.
38
,
6311
6326
(
2005
).
3.
L. A.
Aguirre
and
C.
Letellier
, “
Investigating observability properties from data in nonlinear dynamics
,”
Phys. Rev. E
83
,
066209
(
2011
).
4.
L. A.
Aguirre
and
C.
Letellier
, “
Controllability and synchronizability: Are they related?
,”
Chaos, Solitons Fractals
83
,
242
251
(
2016
).
5.
I.
Belykh
,
E.
De Lange
, and
M.
Hasler
, “
Synchronization of bursting neurons: What matters in the network topology
,”
Phys. Rev. Lett.
94
,
188101
(
2005
).
6.
E.
Bianco-Martinez
,
M. S.
Baptista
, and
C.
Letellier
, “
Symbolic computations of nonlinear observability
,”
Phys. Rev. E
91
,
062912
(
2015
).
7.
D. S.
Broomhead
and
G. P.
King
, “
Extracting qualitative dynamics from experimental data
,”
Physica D
20
,
217
236
(
1986
).
8.
J. W.
Brown
, “
The tale of the neuroscientist and the computer: Why mechanistic theory matters
,”
Front. Neurosci.
8
,
349
(
2014
).
9.
R.
FitzHugh
, “
Impulses and physiological states in theoretical mmodel of nerve membrane
,”
Biophys. J.
1
,
445
466
(
1961
).
10.
B.
Friedland
, “
Controllability index based on conditioning number
,”
J. Dyn. Syst., Meas. Control
97
(
4
),
444
445
(
1975
).
11.
M.
Frunzete
,
J. P.
Barbot
, and
C.
Letellier
, “
Influence of the singular manifold of nonobservable states in reconstructing chaotic attractors
,”
Phys. Rev. E
86
(
2
),
026205
(
2012
).
12.
M.
Girardi-Schappo
,
M. H. R.
Tragtenberg
, and
O.
Kinouchi
, “
A brief history of excitable map-based neurons and neural networks
,”
J. Neurosci. Methods
220
,
116
130
(
2013
).
13.
A.
Groth
, “
Monte Carlo singular spectrum analysis (SSA) revisited: Detecting oscillator clusters in multivariate datasets
,”
J. Clim.
28
(
19
),
7873
7893
(
2015
).
14.
A.
Groth
and
M.
Ghil
, “
Multivariate singular spectrum analysis and the road to phase synchronization
,”
Phys. Rev. E
84
,
036206
(
2011
).
15.
M.
Ghil
,
M. R.
Allen
,
M. D.
Dettinger
,
K.
Ide
,
D.
Kondrashov
,
M. E.
Mann
, and
P.
Yiou
, “
Advanced spectral methods for climate time series
,”
Rev. Geophys.
40
(
1
),
3.1
3.41
, doi: (
2002
).
16.
R.
Hermann
and
A.
Krener
, “
Nonlinear controllability and observability
,”
IEEE Trans. Autom. Control
22
(
5
),
728
740
(
1977
).
17.
J. L.
Hindmarsh
and
R. M.
Rose
, “
A model of neuronal bursting using three coupled first order differential equations
,”
Proc. R. Soc. London B
221
,
87
102
(
1984
).
18.
A. L.
Hodgkin
and
A. F.
Huxley
, “
A quantitative description of membrane current and its application to conduction and excitation in nerve
,”
J. Physiol.
117
,
500
544
(
1952
).
19.
A.
Isidori
,
Nonlinear Control Systems
(
Springer
,
London
,
1995
).
20.
E. M.
Izhikevich
, “
Simple model of spiking neurons
,”
IEEE Trans. Neural Networks
14
(
6
),
1569
1572
(
2003
).
21.
E. M.
Izhikevich
, “
Which model to use for cortical spiking neurons?
,”
IEEE Trans. Neural Networks
15
(
5
),
1063
1070
(
2004
).
22.
E. M.
Izhikevich
and
G. M.
Edelman
, “
Large-scale model of mammalian thalamocortical systems
,”
PNAS
105
(
9
),
3593
3598
(
2008
).
23.
R. E.
Kalman
, “
On the general theory of control systems
,” in
Proceedings of the First IFAC Congress Automatic Control
(Butterworths, London,
1960
), pp.
481
492
.
24.
S.-Y. Y.
Kim
and
W.
Lim
, “
Coupling-induced population synchronization in an excitatory population of subthreshold Izhikevich neurons
,”
Cognit. Neurodyn.
7
(
6
),
495
503
(
2013
).
25.
T.
Kreuz
,
D.
Chicharro
,
M.
Greschner
, and
R. G.
Andrzejak
, “
Time-resolved and time-scale adaptive measures of spike train synchrony
,”
J. Neurosci. Methods
195
(
1
),
92
106
(
2011
).
26.
T.
Kreuz
,
D.
Chicharro
,
C.
Houghton
,
R. G.
Andrzejak
, and
F.
Mormann
, “
Monitoring spike train synchrony
,”
J. Neurophysiol.
109
(
5
),
1457
1472
(
2013
).
27.
C.
Letellier
and
L. A.
Aguirre
, “
Investigating nonlinear dynamics from time series: The influence of symmetries and the choice of observables
,”
Chaos
12
(
3
),
549
558
(
2002
).
28.
C.
Letellier
and
L. A.
Aguirre
, “
Symbolic observability coefficients for univariate and multivariate analysis
,”
Phys. Rev. E
79
,
066210
(
2009
).
29.
C.
Letellier
,
L. A.
Aguirre
, and
J.
Maquet
, “
Relation between observability and differential embeddings for nonlinear dynamics
,”
Phys. Rev. E
71
,
066213
(
2005
).
30.
C.
Letellier
,
J.
Maquet
,
L.
Le Sceller
,
G.
Gouesbet
, and
L. A.
Aguirre
, “
On the non-equivalence of observables in phase-space reconstructions from recorded time series
,”
J. Phys. A
31
,
7913
7927
(
1998
).
31.
C.
Letellier
,
I.
Sendiña-Nadal
,
E.
Bianco-Martinez
, and
M. S.
Baptista
, “
A symbolic network-based nonlinear theory for dynamical systems observability
,” preprint (
2017
).
32.
E.
Lowet
,
M. J.
Roberts
,
P.
Bonizzi
,
J.
Karel
, and
P.
De Weerd
, “
Quantifying neural oscillatory synchronization: A comparison between spectral coherence and phase-locking value approaches
,”
PLoS One
11
,
e0146443
(
2016
).
33.
S.
Mangiarotti
and
C.
Letellier
, “
Topological analysis for designing a suspension of the Hnon map
,”
Phys. Lett. A
379
,
3069
3074
(
2015
).
34.
J.
Nagumo
,
S.
Arimoto
, and
S.
Yoshizawa
, “
An active pulse transmission line simulating nerve axon
,”
Proc. IRE
50
(
10
),
2061
2070
(
1962
).
35.
L. L.
Portes
and
L. A.
Aguirre
, “
Enhancing multivariate singular spectrum analysis for phase synchronization: The role of observability
,”
Chaos
26
,
093112
(
2016a
).
36.
L. L.
Portes
and
L. A.
Aguirre
, “
Matrix formulation and singular-value decomposition algorithm for structured varimax rotation in multivariate singular spectrum analysis
,”
Phys. Rev. E
93
,
052216
(
2016b
).
37.
L. L.
Portes
,
R. N.
Benda
,
H.
Ugrinowitsch
, and
L. A.
Aguirre
, “
Impact of the recorded variable on recurrence quantification analysis of flows
,”
Phys. Lett. A
378
(
32–33
),
2382
2388
(
2014
).
38.
O. E.
Rössler
, “
An equation for continuous chaos
,”
Phys. Lett. A
57
,
397
398
(
1976
).
39.
S. J.
Schiff
,
Neural Control Engineering
(
The MIT Press
,
Cambridge, Massachusetts
,
2012
).
40.
M.
Sedigh-Sarvestani
,
S. J.
Schiff
, and
B. J.
Gluckman
, “
Reconstructing mammalian sleep dynamics with data assimilation
,”
PLoS Comput. Biol.
8
(
11
),
e1002788
(
2012
).
41.
I.
Sendiña-Nadal
,
S.
Boccaletti
, and
C.
Letellier
, “
Observability coefficients for predicting the class of synchronizability from the algebraic structure of the local oscillators
,”
Phys. Rev. E
94
,
042205
(
2016
).
42.
C.
Siettos
and
J.
Starke
, “
Multiscale modeling of brain dynamics: From single neurons and networks to mathematical tools
,”
WIREs Syst. Biol. Med.
8
,
438
458
(
2016
).
43.
F.
Su
,
J.
Wang
,
H.
Li
,
B.
Deng
,
H.
Yu
, and
C.
Liu
, “
Analysis and application of neuronal network controllability and observability
,”
Chaos
27
,
023103
(
2017
).
44.
A. J.
Whalen
,
S. N.
Brennan
,
T. D.
Sauer
, and
S. J.
Schiff
, “
Observability and controllability of nonlinear networks: The role of symmetry
,”
Phys. Rev. X
5
,
011005
(
2015
).
45.
H. U.
Voos
,
J.
Timmer
, and
J.
Kurths
, “
Nonlinear dynamical system identification from uncertain and indirect measurements
,”
Int. J. Bifurcation Chaos
14
(
6
),
1905
1933
(
2004
).
You do not currently have access to this content.