This article describes a numerical procedure designed to tune the parameters of periodically driven dynamical systems to a state in which they exhibit rich dynamical behavior. This is achieved by maximizing the diversity of subharmonic solutions available to the system within a range of the parameters that define the driving. The procedure is applied to a problem of interest in computational neuroscience: a circuit composed of two interacting populations of neurons under external periodic forcing. Depending on the parameters that define the circuit, such as the weights of the connections between the populations, the response of the circuit to the driving can be strikingly rich and diverse. The procedure is employed to find circuits that, when driven by external input, exhibit multiple stable patterns of periodic activity organized in complex tuning diagrams and signatures of low dimensional chaos.

1.
G.
Buzsáki
and
A.
Draguhn
, “
Neuronal oscillations in cortical networks
,”
Science
304
(
5679
),
1926
1929
(
2004
).
2.
M.
Golubitsky
,
I.
Stewart
,
P.-L.
Buono
, and
J. J.
Collins
, “
Symmetry in locomotor central pattern generators and animal gaits
,”
Nature
401
(
6754
)
693
695
(
1999
).
3.
F.
Delcomyn
, “
Neural basis of rhythmic behavior in animals
,”
Science
210
(
4469
),
492
498
(
1980
).
4.
A. K.
Engel
,
P.
Fries
, and
W.
Singer
, “
Dynamic predictions: oscillations and synchrony in top-down processing
,”
Nat. Rev. Neurosci.
2
(
10
),
704
716
(
2001
).
5.
G.
Agarwal
,
I. H.
Stevenson
,
A.
Berényi
,
K.
Mizuseki
,
G.
Buzsáki
, and
F. T.
Sommer
, “
Spatially distributed local fields in the hippocampus encode rat position
,”
Science
344
(
6184
),
626
630
(
2014
).
6.
G.
Buzsaki
,
Rhythms of the Brain
(
Oxford University Press
,
2006
).
7.
F. C.
Hoppensteadt
and
E. M.
Izhikevich
, “
Thalamo-cortical interactions modeled by weakly connected oscillators: could the brain use FM radio principles?
,”
Biosystems
48
(
1
),
85
94
(
1998
).
8.
R.
Veltz
and
T. J.
Sejnowski
, “
Periodic forcing of inhibition-stabilized networks: Nonlinear resonances and phase-amplitude coupling
,”
Neural Comput.
27
,
2477
(
2015
).
9.
C. S.
Herrmann
,
M. M.
Murray
,
S.
Ionta
,
A.
Hutt
, and
J.
Lefebvre
, “
Shaping intrinsic neural oscillations with periodic stimulation
,”
J. Neurosci.
36
(
19
),
5328
5337
(
2016
).
10.
A.
Szucs
,
R. C.
Elson
,
M. I.
Rabinovich
,
H. D. I.
Abarbanel
, and
A. I.
Selverston
, “
Nonlinear behavior of sinusoidally forced pyloric pacemaker neurons
,”
J. Neurophysiol.
85
(
4
),
1623
1638
(
2001
).
11.
J. M.
Méndez
,
G. B.
Mindlin
, and
F.
Goller
, “
Interaction between telencephalic signals and respiratory dynamics in songbirds
,”
J. Neurophysiol.
107
(
11
),
2971
2983
(
2012
).
12.
M. I.
Rabinovich
and
H. D. I.
Abarbanel
, “
The role of chaos in neural systems
,”
Neuroscience
87
(
1
),
5
14
(
1998
).
13.
E.
Ott
,
C.
Grebogi
, and
J. A.
Yorke
, “
Controlling chaos
,”
Phys. Rev. Lett.
64
(
11
),
1196
(
1990
).
14.
M. A.
Trevisan
,
G. B.
Mindlin
, and
F.
Goller
, “
Nonlinear model predicts diverse respiratory patterns of birdsong
,”
Phys. Rev. Lett.
96
(
5
),
058103
(
2006
).
15.
A.
Granada
,
M.
Gabitto
,
G.
García
,
J.
Alliende
,
J.
Méndez
,
M. A.
Trevisan
, and
G. B.
Mindlin
, “
The generation of respiratory rhythms in birds
,”
Physica A
371
(
1
),
84
87
(
2006
).
16.
E. M.
Arneodo
,
M.
Ezequiel
,
L. M.
Alonso
,
J. A.
Alliende
, and
G. B.
Mindlin
, “
The dynamical origin of physiological instructions used in birdsong production
,”
Pramana
70
(
6
),
1077
1085
(
2008
).
17.
L. M.
Alonso
,
J. A.
Alliende
,
F.
Goller
, and
G. B.
Mindlin
, “
Low-dimensional dynamical model for the diversity of pressure patterns used in canary song
,”
Phys. Rev. E
79
(
4
),
041929
(
2009
).
18.
M. A.
Goldin
and
G. B.
Mindlin
, “
Evidence and control of bifurcations in a respiratory system
,”
Chaos
23
(
4
),
043138
(
2013
).
19.
R. G.
Alonso
,
M. A.
Trevisan
,
A.
Amador
,
F.
Goller
, and
G. B.
Mindlin
, “
A circular model for song motor control in Serinus canaria
,”
Front. Comput. Neurosci.
9
,
41
(
2015
).
20.
J.
Guckenheimer
and
P.
Holmes
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
(
Springer Verlag
,
New York
,
1983
), Vol.
42
.
21.
S.
Wiggins
,
Introduction to Applied Nonlinear Dynamical Systems and Chaos
(
Springer Science & Business Media
,
2003
), Vol.
2
.
22.
W. H.
Press
,
Numerical Recipes: The Art of Scientific Computing
, 3rd ed. (
Cambridge university Press
,
2007
).
23.
V. I.
Arnold
, in
Geometrical Methods in the Theory of Ordinary Differential Equations (Grundlehren der mathematischen Wissenschaften)
, Fundamental Principles of Mathematical Science Vol.
250
(
Springer
,
Verlag, New York
,
1983
).
24.
H. R.
Wilson
and
J. D.
Cowan
, “
Excitatory and inhibitory interactions in localized populations of model neurons
,”
Biophys. J.
12
(
1
),
1
24
(
1972
).
25.
A.
Destexhe
and
T. J.
Sejnowski
, “
The Wilson-Cowan model, 36 years later
,”
Biol. Cybern.
101
(
1
),
1
2
(
2009
).
26.
J. H.
Holland
, “
Genetic algorithms
,”
Sci. Am.
267
(
1
),
66
72
(
1992
).
27.
M. J.
Feigenbaum
, “
Quantitative universality for a class of nonlinear transformations
,”
J. Stat. Phys.
19
(
1
),
25
52
(
1978
).
28.
A.
Libchaber
,
C.
Laroche
, and
S.
Fauve
, “
Period doubling cascade in mercury, a quantitative measurement
,”
J. Phys. Lett.
43
(
7
),
211
216
(
1982
).
29.
G. B.
Ermentrout
, “
Period doublings and possible chaos in neural models
,”
SIAM J. Appl. Math.
44
(
1
),
80
95
(
1984
).
30.
R.
Gilmore
and
M.
Lefranc
,
The Topology of Chaos: Alice in Stretch and Squeezeland
(
John Wiley & Sons
,
2008
).
31.
G. B.
Mindlin
,
X.-J.
Hou
,
H. G.
Solari
,
R.
Gilmore
, and
N. B.
Tufillaro
, “
Classification of strange attractors by integers
,”
Phys. Rev. Lett.
64
(
20
),
2350
(
1990
).
32.
J.
Kennedy
and
J. A.
Yorke
, “
Basins of Wada
,”
Physica D
51
(
1–3
),
213
225
(
1991
).
33.
Nonlinear Oscillations in Biology
, Lectures in Applied Mathematics Vol
17
, edited by
F. C.
Hoppenstead
(
American Mathematical Society
,
1979
).
34.
N.
Kopell
and
G. B.
Ermentrout
, “
Coupled oscillators and the design of central pattern generators
,”
Math. Biosci.
90
(
1
),
87
109
(
1988
).
35.
L. M.
Alonso
, “
Parameter estimation, nonlinearity, and Occam's razor
,”
Chaos
25
(
3
),
033104
(
2015
).
You do not currently have access to this content.