We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.

1.
S. H.
Strogatz
,
Nature (London)
410
,
268
(
2001
).
2.
P.
Holme
and
J.
Saramäki
,
Phys. Rep.
519
,
97
(
2012
).
3.
Y.
Wu
,
C.
Zhou
,
J.
Xiao
,
J.
Kurths
, and
H. J.
Schellnhuber
,
Proc. Natl. Acad. Sci. U. S. A.
107
,
18803
(
2010
).
4.
J. L.
Iribarren
and
E.
Moro
,
Phys. Rev. Lett.
103
,
038702
(
2009
).
5.
R.
Guimerà
,
L.
Danon
,
A.
Díaz-Guilera
,
F.
Giralt
, and
A.
Arenas
,
Phys. Rev. E
68
,
065103
(
2003
).
6.
J.-P.
Onnela
,
J.
Saramäki
,
J.
Hyvönen
,
G.
Szabó
,
D.
Lazer
,
K.
Kaski
,
J.
Kertész
, and
A. L.
Barabási
,
Proc. Natl. Acad. Sci. U. S. A.
104
,
7332
(
2007
).
7.
R.
Olfati-Saber
and
P.
Jalalkamali
,
IEEE Trans. Autom. Control
57
,
2609
(
2012
).
8.
D. S.
Bassett
,
N. F.
Wymbs
,
M. A.
Porter
,
P. J.
Mucha
,
J. M.
Carlson
, and
S. T.
Grafton
,
Proc. Natl. Acad. Sci. U. S. A.
108
,
7641
(
2011
).
9.
J. D.
Skufca
and
E. M.
Bollt
,
Math. Biosci. Eng.
1
,
347
(
2004
).
10.
A.
Baronchelli
and
A.
Diaz-Guilera
,
Phys. Rev. E
85
,
016113
(
2012
).
11.
S.-Y.
Liu
,
A.
Baronchelli
, and
N.
Perra
,
Phys. Rev. E
87
,
032805
(
2013
).
12.
F.
Bullo
,
J.
Cortés
, and
S.
Martinez
,
Distributed Control of Robotic Networks: A Mathematical Approach to Motion Coordination Algorithms
(
Princeton University Press
,
2009
).
13.
W.
Sun
,
C.
Huang
,
J.
,
X.
Li
, and
S.
Chen
,
Chaos
26
,
023106
(
2016
).
14.
B.
Blonder
and
A.
Dornhaus
,
PLoS One
6
,
e20298
(
2011
).
15.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization
(
Cambridge University Press
,
Cambridge, UK
,
2001
).
16.
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D.-U.
Hwang
,
Phys. Rep.
424
,
175
(
2006
).
17.
A.
Arenas
,
A.
Díaz-Guilera
,
J.
Kurths
,
Y.
Moreno
, and
C.
Zhou
,
Phys. Rep.
469
,
93
(
2008
).
18.
M.
Leoni
and
P.
Sens
,
Phys. Rev. E
91
,
022720
(
2015
).
19.
K.
Römer
, in
Proceedings of the 2nd ACM International Symposium on Mobile ad hoc Networking & Computing
(
2001
), pp.
173
182
.
20.
K.
Uriu
,
Y.
Morishita
, and
Y.
Iwasa
,
Proc. Natl. Acad. Sci. U. S. A.
107
,
4979
(
2010
).
21.
K.
Uriu
,
S.
Ares
,
A. C.
Oates
, and
L. G.
Morelli
,
Phys. Biol.
9
,
036006
(
2012
).
22.
I.
Aihara
,
T.
Mizumoto
,
T.
Otsuka
,
H.
Awano
,
K.
Nagira
,
H. G.
Okuno
, and
K.
Aihara
,
Sci. Rep.
4
,
3891
(
2014
).
23.
I. V.
Belykh
,
V. N.
Belykh
, and
M.
Hasler
,
Physica D
195
,
188
(
2004
).
24.
M.
Frasca
,
A.
Buscarino
,
A.
Rizzo
,
L.
Fortuna
, and
S.
Boccaletti
,
Phys. Rev. Lett.
100
,
044102
(
2008
).
25.
M.
Porfiri
,
D. J.
Stilwell
,
E. M.
Bollt
, and
J. D.
Skufca
,
Physica D
224
,
102
(
2006
).
26.
D. J.
Stilwell
,
E. M.
Bollt
, and
D. G.
Roberson
,
SIAM J. Appl. Dyn. Syst.
5
,
140
(
2006
).
27.
F.
Peruani
,
E. M.
Nicola
, and
L. G.
Morelli
,
New J. Phys.
12
,
093029
(
2010
).
28.
N.
Fujiwara
,
J.
Kurths
, and
A.
Díaz-Guilera
,
Phys. Rev. E
83
,
025101(R)
(
2011
).
29.
N.
Fujiwara
,
J.
Kurths
, and
A.
Díaz-Guilera
,
AIP Conf. Proc.
1389
,
1015
(
2011
).
30.
L.
Prignano
,
O.
Sagarra
,
P. M.
Gleiser
, and
A.
Diaz-Guilera
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
22
,
1250179
(
2012
).
31.
L.
Prignano
,
O.
Sagarra
, and
A.
Díaz-Guilera
,
Phys. Rev. Lett.
110
,
114101
(
2013
).
32.
H.
Fujisaka
and
T.
Yamada
,
Prog. Theor. Phys.
69
,
32
(
1983
).
33.
L. M.
Pecora
and
T. L.
Carroll
,
Phys. Rev. Lett.
64
,
821
(
1990
).
34.
H.
Fujisaka
and
T.
Yamada
,
Prog. Theor. Phys.
74
,
918
(
1985
).
35.
36.
F.
Sivrikaya
and
B.
Yener
,
IEEE Network
18
,
45
(
2004
).
37.
L. M.
Pecora
and
T. L.
Carroll
,
Phys. Rev. Lett.
80
,
2109
(
1998
).
38.
A.
Almendral
and
A.
Díaz-Guilera
,
New J. Phys.
9
,
187
(
2007
).
39.
M.
Barahona
and
L. M.
Pecora
,
Phys. Rev. Lett.
89
,
054101
(
2002
).
40.
N.
Fujiwara
and
J.
Kurths
,
Eur. Phys. J. B
69
,
45
(
2009
).
41.
S.
Boccaletti
,
D.-U.
Hwang
,
M.
Chávez
,
A.
Amann
,
J.
Kurths
, and
L. M.
Pecora
,
Phys. Rev. E
74
,
016102
(
2006
).
42.
J.
Zhao
,
D. J.
Hill
, and
T.
Liu
,
Automatica
45
,
2502
(
2009
).
43.
J.
Dall
and
M.
Christensen
,
Phys. Rev. E
66
,
016121
(
2002
).
44.
D. J.
Klein
,
P.
Lee
,
K. A.
Morgansen
, and
T.
Javidi
,
IEEE J. Sel. Area Commun.
26
,
695
(
2008
).
You do not currently have access to this content.