The Andean tarka flute generates multiphonic sounds. Using spectral techniques, we verify two distinctive musical behaviors and the nonlinear nature of the tarka. Through nonlinear time series analysis, we determine chaotic and hyperchaotic behavior. Experimentally, we observe that by increasing the blow pressure on different fingerings, peculiar changes from linear to nonlinear patterns are produced, leading ultimately to quenching.
References
1.
A.
Gérard
, “Tara y tarka. Un sonido, un instrumento y dos causas (Estudio organológico y acústico de la tarka)
,” en Diablos tentadores y pinkillus embriagadores en la fiesta de Anata/Phujllay. Estudios de antropología musical del carnaval en los Andes de Bolivia
, edited by A.
Gérard
(Plural editores
, La Paz
, 2010
), Vol. 1
, pp. 69
–140
.2.
H.
Stobart
, “Tara and Q'iwa - Worlds of Sounds and Meaning
,” in Cosmología y Música en los Andes
, edited by M. P.
Baumann
(International Institute for Traditional Music
, Vervuert Iberoamericana, Berlin
, 1996
), pp. 67
–81
.3.
H.
Stobart
, Music and the Poetics of Production in the Bolivian Andes
(SOAS Musicology Series-Ashgate
, United Kingdom
, 2006
).4.
D.
Keefe
and B.
Laden
, “Correlation dimension of Woodwind multiphonic tones
,” J. Acoust. Soc. Am.
90
, 1754
–1795
(1991
).5.
C.
Maganza
, R.
Caussé
, and F.
Laloë
, “Bifurcation, period doubling and chaos in clarinet like systems
,” Europhys. Lett.
1
, 295
–302
(1986
).6.
N. H.
Fletcher
, “Mode locking in nonlinearly excited inharmonic musical oscillators
,” J. Acoust. Soc. Am.
64
, 1566
–1569
(1978
).7.
T. D.
Wilson
and D. H.
Keefe
, “Characterizing the clarinet tone: Measurements of Lyapunov exponents, correlation, dimension and unsteadiness
,” J. Acoust. Soc. Am.
104
, 550
–561
(1998
).8.
W.
Lauterborn
and U.
Parlitz
, “Methods of chaos physics and their application to acoustics
,” J. Acoust. Soc. Am.
84
, 1975
–1993
(1988
).9.
M.
Castellengo
, Sons Multiphoniques aux Instruments a Vent
(Rapports IRCAM Nr. 34/82
, Paris
, 1982
).10.
11.
H.
Kantz
and T.
Schreiber
, Nonlinear Time Series Analysis
(Cambridge University Press
, Cambridge
, 2003
).12.
F.
Takens
, “Detecting strange attractors in fluid turbulence
,” in Dynamical Systems and Turbulence
, edited by D.
Rand
and L. S.
Young
(Springer
, Berlin
, 1981
), pp. 366
–381
.13.
T.
Sauer
, J. A.
Yorke
, and M.
Casdagli
, “Embedology
,” J. Stat. Phys.
65
, 579
–616
(1991
).14.
R.
Hegger
, H.
Kantz
, and T.
Schreiber
, “Practical implementation of nonlinear time series methods: The TISEAN package
,” Chaos
9
, 413
–435
(1999
).15.
J. A.
Armstrong
, N.
Bloembergen
, J.
Ducuing
, and P. S.
Pershan
, “Interactions between light waves in a nonlinear dielectric
,” Phys. Rev.
127
, 1918
–1939
(1962
).16.
A. H.
Nayfeh
and D. T.
Mook
, Nonlinear Oscillations
(John Wiley & Sons, Inc.
, New York
, 1995
).17.
N. H.
Fletcher
, “Acoustical correlates of flute performance technique
,” J. Acoust. Soc. Am.
57
, 233
–237
(1975
).18.
F. M.
Atay
, “Total and partial amplitude death in networks of diffusively coupled oscillators
,” Physica D
183
, 1
–18
(2003
).19.
D. V.
Ramana Reddy
, A.
Sen
, and G. L.
Johnston
, “Experimental evidence of time-delay-induced death in coupled limit-cycle oscillators
,” Phys. Rev. Lett.
85
, 3381
–3384
(2000
).20.
A.
Stefanski
and T.
Kapitaniak
, “Steady state locking in coupled chaotic systems
,” Phys. Lett. A
210
, 279
–282
(1996
).21.
W.
Zou
, D. V.
Senthilkumar
, J.
Duan
, and J.
Kurths
, “Emergence of amplitude and oscillation death in identical coupled oscillators
,” Phys. Rev. E
90
, 032906
(2014
).22.
T.
Banerjee
and D.
Biswas
, “Amplitude death and synchronized states in nonlinear time-delay systems coupled through mean-field diffusion
,” Chaos
23
, 043101
(2013
).23.
A.
Koseska
, E.
Volkov
, and J.
Kurths
, “Oscillation quenching mechanisms: Amplitude vs. oscillation death
,” Phys. Rep.
531
, 173
–199
(2013
).24.
A.
Koseska
, E.
Volkov
, and J.
Kurths
, “Transition from amplitude to oscillation death via Turing bifurcation
,” Phys. Rev. Lett.
111
, 024103
(2013
).25.
G.
Gottwald
and I.
Melbourne
, “On the implementation of the 0–1 test for chaos
,” SIAM J. Appl. Dyn. Syst.
8
, 129
–145
(2009
).26.
J.
Guckenheimer
and P.
Holmes
, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
(Springer
, New York
, 1986
).27.
E.
Ott
, Chaos in Dyamical Systems
(Cambridge University Press
, Cambridge
, 2002
).28.
H. D. I.
Abarbanel
, Analysis of Observed Chaotic Data
(Springer
, New York
, 1996
).29.
H.
Kantz
, G.
Radons
, and H.
Yang
, “The problem of spurious Lyapunov exponents in time series analysis and its solution by covariant Lyapunov vectors
,” J. Phys. A: Math. Gen.
46
, 254009
(2013
).30.
S.
Giannerini
and R.
Rosa
, “New resampling method to assess the accuracy of the maximal Lyapunov exponent estimation
,” Physica D
155
, 101
–111
(2001
).31.
S.
Giannerini
, R.
Rosa
, and D. L.
Gonzalez
, “Testing chaotic dynamics in systems with two positive Lyapunov exponents: a bootstrap solution
,” Int. J. Bifurcation Chaos Appl. Sci. Eng.
17
, 169
–182
(2007
).32.
N.
Marwan
, M.
Romano
, M.
Thiel
, and J.
Kurths
, “Recurrence plots for the analysis of complex systems
,” Phys. Rep.
438
, 237
–329
(2007
).33.
E. J.
Ngamga
, A.
Buscarino
, M.
Frasca
, G.
Sciuto
, J.
Kurths
, and L.
Fortuna
, “Recurrence-based detection of the hyperchaos-chaos transition in an electronic circuit
,” Chaos
20
, 043115
(2010
).34.
O. A.
Rosso
, H. A.
Larrondo
, M. T.
Martin
, A.
Plastino
, and M. A.
Fuentes
, “Distinguishing noise from chaos
,” Phys. Rev. Lett.
99
, 154102
(2007
).35.
F.
Olivares
, A.
Plastino
, and O. A.
Rosso
, “Contrasting chaos with noise via local versus global information quantifiers
,” Phys. Lett. A
376
, 1577
–1583
(2012
).36.
M.
Sano
and Y.
Sawada
, “Measurement of the Lyapunov spectrum from a chaotic time series
,” Phys. Rev. Lett.
55
, 1082
–1085
(1985
).37.
T.
Kapitaniak
and L. O.
Chua
, “Hyperchaotic attractors of unidirectionally-coupled Chua's circuits
,” Int. J. Bifurcation Chaos Appl. Sci. Eng.
4
, 477
–482
(1994
).38.
T.
Kapitaniak
, L. O.
Chua
, and G. Q.
Zhong
, “Experimental hyperchaos in coupled Chua's circuits
,” IEEE Trans. Circuits Syst., I
41
, 499
–503
(1994
).39.
X.
Wang
and M.
Wang
, “A hyperchaos generated from Lorenz system
,” Physica A
387
, 3751
–3758
(2008
).40.
G. M.
Mahmoud
, M. A.
Al-Kashif
, and A. A.
Farghaly
, “Chaotic and hyperchaotic attractors of a complex nonlinear system
,” J. Phys. A: Math. Theor.
41
, 055104
(2008
).41.
42.
I.
Sliwa
, P.
Szlachetka
, and K.
Grygiel
, “Generation of strongly chaotic beats
,” Int. J. Bifurcation Chaos Appl. Sci. Eng.
18
, 835
–840
(2008
).43.
J.
Cartwright
, D. L.
Gonzalez
, and O.
Piro
, “Nonlinear dynamics of the perceived pitch of complex sounds
,” Phys. Rev. Lett.
82
, 5389
–5392
(1999
).44.
E.
Bradley
and H.
Kantz
, “Nonlinear time-series analysis revisited
,” Chaos
25
, 097610
(2015
).© 2016 Author(s).
2016
Author(s)
You do not currently have access to this content.