We study the dynamics of a discrete-time tritrophic model which mimics the observed periodicity in the population cycles of the larch budmoth insect which causes widespread defoliation of larch forests at high altitudes periodically. Our model employs q-deformation of numbers to model the system comprising the budmoth, one or more parasitoid species, and larch trees. Incorporating climate parameters, we introduce additional parasitoid species and show that their introduction increases the periodicity of the budmoth cycles as observed experimentally. The presence of these additional species also produces other interesting dynamical effects such as periodic bursting and oscillation quenching via oscillation death, amplitude death, and partial oscillation death which are also seen in nature. We suggest that introducing additional parasitoid species provides an alternative explanation for the collapse of the nine year budmoth outbreak cycles observed in the Swiss Alps after 1981. A detailed exploration of the parameter space of the system is performed with movies of bifurcation diagrams which enable variation of two parameters at a time. Limit cycles emerge through a Neimark–Sacker bifurcation with respect to all parameters in all the five and higher dimensional models we have studied.

1.
J.
Esper
,
U.
Büntgen
,
D. C.
Frank
,
D.
Nievergelt
, and
A.
Liebhold
, “
1200 years of regular outbreaks in alpine insects
,”
Proc. R. Soc. London, Ser. B
274
,
671
679
(
2007
).
2.
O.
Konter
,
J.
Esper
,
A.
Liebhold
,
T.
Kyncl
,
L.
Schneider
,
E.
Düthorn
, and
U.
Büntgen
, “
Tree-ring evidence for the historical absence of cyclic larch budmoth outbreaks in the Tatra Mountains
,”
Trends. Ecol. Evol.
29
,
809
814
(
2015
).
3.
W.
Baltensweiler
and
A.
Fischlin
, “
The larch budmoth in the Alps
,” in
Dynamics of Forest Insect Populations
(
Springer
,
New York
,
1988
), pp.
331
351
.
4.
W.
Baltensweiler
, “
Why the larch bud-moth cycle collapsed in the subalpine larch-cembran pine forests in the year 1990 for the first time since 1850
,”
Oecologia
94
,
62
66
(
1993
).
5.
A. A.
Berryman
, “
What causes population cycles of forest Lepidoptera?
,”
Trends. Ecol. Evol.
11
,
28
32
(
1996
).
6.
G.
Battipaglia
 et al, “
Long-term effects of climate and land-use change on larch budmoth outbreaks in the French Alps
,”
Clim. Res.
62
,
1
14
(
2014
).
7.
S. V.
Iyengar
,
J.
Balakrishnan
, and
J.
Kurths
, “
Impact of climate change on larch budmoth cyclic outbreaks
,”
Sci. Rep.
6
,
27845
(
2016
).
8.
L.
Euler
,
Introduction in Analysis Infinitorum
(
Bousquet
,
Lausanne
,
1748
).
9.
E.
Heine
,
Handbuch der Kugelfunktionen
(
Reimer
,
Berlin
,
1878
), Vol.
1
, reprinted by Physica-Verlag, Wurzburg (1961).
10.
F. H.
Jackson
, “
A generalization of the functions Γ(n) and xn
,”
Proc. R. Soc. London
74
,
64
72
(
1904
).
11.
F. H.
Jackson
, “
On q-functions and a certain difference operator
,”
Trans. - R. Soc. Edinburgh
46
,
253
281
(
1909
).
12.
T.
Geisel
and
S.
Thomae
, “
Anomalous diffusion in intermittent chaotic systems
,”
Phys. Rev. Lett.
52
,
1936
(
1984
).
13.
C.
Tsallis
, “
Possible generalization of Boltzmann-Gibbs statistics
,”
J. Stat. Phys.
52
,
479
487
(
1988
).
14.
C.
Beck
,
E. G. D.
Cohen
, and
S.
Rizzo
, “
Atmospheric turbulence and superstatistics
,”
Europhys. News
36
,
189
191
(
2005
).
15.
S.
Abe
,
U.
Tirnakli
, and
P. A.
Varotsos
, “
Complexity of seismicity and nonextensive statistics
,”
Europhys. News
36
,
206
208
(
2005
).
16.
A. R.
Plastino
and
A.
Plastino
, “
Stellar polytropes and Tsallis' entropy
,”
Phys. Lett. A
174
,
384
386
(
1993
).
17.
A.
Rapisarda
and
A.
Pluchino
, “
Nonextensive thermodynamics and glassy behaviour
,”
Europhys. News
36
,
202
206
(
2005
).
18.
G.
Kaniadakis
,
A.
Lavagno
, and
P.
Quarati
, “
Generalized statistics and solar neutrinos
,”
Phys. Lett. B
369
,
308
312
(
1996
).
19.
E.
Lutz
, “
Anomalous diffusion and Tsallis statistics in an optical lattice
,”
Phys. Rev. A
67
,
051402(R)
(
2003
).
20.
P.
Douglas
,
S.
Bergamini
, and
F.
Renzoni
, “
Tunable tsallis distributions in dissipative optical lattices
,”
Phys. Rev. Lett.
96
,
110601
(
2006
).
21.
P.
Turchin
,
Complex Population Dynamics: A Theoretical/Empirical Synthesis
(
Princeton University Press
,
NJ
,
2003
).
22.
P.
Turchin
 et al, “
Dynamical effects of plant quality and parasitism on population cycles of larch budmoth
,”
Ecology
84
,
1207
1214
(
2003
).
23.
P.
Turchin
 et al, “
Population cycles of the larch budmoth in Switzerland
,” in
Population cycles: The case of trophic interactions
, edited by
A.
Berryman
(
Oxford University Press
,
2002
), pp.
130
141
.
24.
V.
Delucchi
, “
Parasitoids and hyperparasitoids of Zeiraphera Diniana and their role in population control in outbreak areas
,”
Entomophaga
27
,
77
92
(
1982
).
25.
N. J.
Mills
, “
Observations on the parasitoid complexes of budmoths (Lepidoptera: Tortricoidea) on larch in Europe
,”
Bull. Entomol. Res.
83
,
103
112
(
1993
).
26.
W. E.
Ricker
, “
Stock and recruitment
,”
J. Fish. Res. Board Can.
11
,
559
623
(
1954
).
27.
A. J.
Nicholson
and
V. A.
Bailey
, “
The balance of animal populations, Part I
,”
J. Zool.
105
,
551
598
(
1935
).
28.
C. S.
Holling
, “
Some characteristics of simple types of predation and parasitism
,”
Can. Entomol.
91
,
385
398
(
1959
).
29.
S. R.-J.
Jang
and
D. M.
Johnson
, “
Dynamics of discrete-time larch budmoth population models
,”
J. Biol. Dyn.
3
,
209
223
(
2009
).
30.
J. R.
Beddington
, “
Mutual interference between parasites or predators and its effect on searching efficiency
,”
J. Anim. Ecol.
44
,
331
340
(
1975
).
31.
A. J.
Lotka
, “
Undamped oscillations derived from the law of mass action
,”
J. Am. Chem. Soc.
42
,
1595
1599
(
1920
).
32.
A. J.
Lotka
,
Elements of Physical Biology
(
Williams and Wilkins
,
Baltimore
,
1925
).
33.
V.
Volterra
, “
Variazionie fluttuazioni del numero d'individui in specie animali conviventi
,”
Mem. R. Accad. Naz. dei Lincei
2
,
31
113
(
1926
);
V.
Volterra
, “
Variations and fluctuations of the numbers of individuals in animal species living together
,” Translation by R. N. Chapman, in
Animal Ecology
(
McGraw-Hill
,
New York
,
1931
), pp.
409
448
.
34.
P. C.
Reid
 et al, “
Global impacts of the 1980 regime shift
,”
Glob. Chang. Biol.
22
,
682
703
(
2016
).
35.
E.
Brocard
 et al, “
Upper air temperature trends above Switzerland 1959–2011
,”
J. Geophys. Res. Atmos.
118
,
4303
4317
(
2013
).
36.
A. J.
Allstadt
,
K. J.
Haynes
,
A. M.
Liebhold
, and
D. M.
Johnson
, “
Long-term shifts in the cyclicity of outbreaks of a forest-defoliating insect
,”
Oecologia
172
,
141
151
(
2013
).
37.
D. M.
Johnson
 et al, “
Climatic warming disrupts recurrent Alpine insect outbreaks
,”
Proc. Natl. Acad. Sci. U.S.A.
107
,
20576
20581
(
2010
).
38.
N.
Gilbert
, “
What they didn't tell you about limit cycles
,”
Oecologia
65
,
112
113
(
1984
).
39.
S. V.
Iyengar
and
J.
Balakrishnan
, “
q-deformations and the dynamics of the larch bud-moth population cycles
,” in
Nature's longest threads: New Frontiers in the Mathematics and Physics of Information in Biology
, edited by
J.
Balakrishnan
and
B. V.
Sreekantan
(
World Scientific Publishing Company Pte. Ltd.
,
Singapore
,
2014
), Chap. 8, pp.
65
80
.
40.
A.
Koseka
,
E.
Volkov
, and
J.
Kurths
, “
Oscillation quenching mechanisms: Amplitude vs. oscillation death
,”
Phys. Rep.
531
,
173
199
(
2013
).
41.
P. A.
Abrams
, “
When does greater mortality increase population size? The long history and diverse mechanisms underlying the hydra effect
,”
Ecol. Lett.
12
,
462
474
(
2009
).
42.
C. N. K.
Anderson
 et al, “
Why fishing magnifies fluctuations in fish abundance
,”
Nature
452
,
835
839
(
2008
).
43.
J.
Guckenheimer
and
P.
Holmes
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
(
Springer Verlag
,
1983
), Vol.
42
.
44.
M.
Han
and
P.
Yu
,
Normal Forms, Melnikov Functions and Bifurcations of Limit Cycles
(
Springer Verlag
,
2012
), Vol.
181
.
You do not currently have access to this content.