This paper investigates the Korteweg-de Vries equation within the scope of the local fractional derivative formulation. The exact traveling wave solutions of non-differentiable type with the generalized functions defined on Cantor sets are analyzed. The results for the non-differentiable solutions when fractal dimension is 1 are also discussed. It is shown that the exact solutions for the local fractional Korteweg-de Vries equation characterize the fractal wave on shallow water surfaces.
References
1.
V. E.
Tarasov
, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media
(Springer
, NY
, 2011
).2.
T. M.
Atanackovic
et al., Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles
(Wiley
, NY
, 2014
).3.
J.
Sabatier
, O. P.
Agrawal
, and J. T.
Machado
, Advances in Fractional Calculus
(Springer
, NY
, 2007
).4.
C.
Li
and F.
Zeng
, Numerical Methods for Fractional Calculus
(CRC Press
, NY
, 2015
).5.
6.
F.
Mainardi
, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models
(World Scientific
, NY
, 2010
).7.
V. S.
Kiryakova
, Generalized Fractional Calculus and Applications
(CRC Press
, NY
, 1993
).8.
R.
Herrmann
, Fractional Calculus: An Introduction for Physicists
(World Scientific
, NY
, 2011
).9.
S.
Momani
, “An explicit and numerical solutions of the fractional KdV equation
,” Math. Comput. Simul.
70
(2
), 110
–118
(2005
).10.
Q.
Wang
, “Homotopy perturbation method for fractional KdV equation
,” Appl. Math. Comput.
190
(2
), 1795
–1802
(2007
).11.
S.
Tauseef Mohyud-Din
, A.
Yildirim
, and E.
Yülüklü
, “Homotopy analysis method for space-and time-fractional KdV equation
,” Int. J. Numer. Methods Heat Fluid Flow
22
(7
), 928
–941
(2012
).12.
S.
Momani
, Z.
Odibat
, and A.
Alawneh
, “Variational iteration method for solving the space-and time-fractional KdV equation
,” Numer. Methods Partial Differ. Equations
24
(1
), 262
–271
(2008
).13.
M.
Kurulay
and M.
Bayram
, “Approximate analytical solution for the fractional modified KdV by differential transform method
,” Commun. Nonlinear Sci. Numer. Simul.
15
(7
), 1777
–1782
(2010
).14.
J.
Hu
, Y.
Ye
, S.
Shen
, and J.
Zhang
, “Lie symmetry analysis of the time fractional KdV-type equation
,” Appl. Math. Comput.
233
, 439
–444
(2014
).15.
X. J.
Yang
, Advanced Local Fractional Calculus and Its Applications
(World Science
, NY
, 2012
).16.
X. J.
Yang
, D.
Baleanu
, and H. M.
Srivastava
, Local Fractional Integral Transforms and Their Applications
(Academic Press
, NY
, 2015
).17.
X. J.
Yang
et al., “Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives
,” Phys. Lett. A
377
(28
), 1696
–1700
(2013
).18.
H. Y.
Liu
, J. H.
He
, and Z. B.
Li
, “Fractional calculus for nanoscale flow and heat transfer
,” Int. J. Numer. Methods Heat Fluid Flow
24
(6
), 1227
–1250
(2014
).19.
X. J.
Yang
and H. M.
Srivastava
, “An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives
,” Commun. Nonlinear Sci. Numer. Simul.
29
(1
), 499
–504
(2015
).20.
X. J.
Yang
, J. T.
Machado
, and J.
Hristov
, “Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow
,” Nonlinear Dyn.
84
(1
), 3
–7
(2016
).21.
X. J.
Yang
, D.
Baleanu
, and H. M.
Srivastava
, “Local fractional similarity solution for the diffusion equation defined on Cantor sets
,” Appl. Math. Lett.
47
, 54
–60
(2015
).22.
S. P.
Yan
, “Local fractional Laplace series expansion method for diffusion equation arising in fractal heat transfer
,” Therm. Sci.
19
(S1
), 131
–135
(2015
).23.
H.
Jafari
, H.
Tajadodi
, and J. S.
Johnston
, “A decomposition method for solving diffusion equations via local fractional time derivative
,” Therm. Sci.
19
(S1
), 123
–129
(2015
).24.
Y.
Zhang
, H. M.
Srivastava
, and M.-C.
Baleanu
, “Local fractional variational iteration algorithm II for non-homogeneous model associated with the non-differentiable heat flow
,” Adv. Mech. Eng.
7
(10
), 1
–5
(2015
).25.
A. M.
Wazwaz
, Partial Differential Equations and Solitary Waves Theory
(Springer
, NY
, 2010
).© 2016 Author(s).
2016
Author(s)
You do not currently have access to this content.