This paper investigates the Korteweg-de Vries equation within the scope of the local fractional derivative formulation. The exact traveling wave solutions of non-differentiable type with the generalized functions defined on Cantor sets are analyzed. The results for the non-differentiable solutions when fractal dimension is 1 are also discussed. It is shown that the exact solutions for the local fractional Korteweg-de Vries equation characterize the fractal wave on shallow water surfaces.

1.
V. E.
Tarasov
,
Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media
(
Springer
,
NY
,
2011
).
2.
T. M.
Atanackovic
 et al,
Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles
(
Wiley
,
NY
,
2014
).
3.
J.
Sabatier
,
O. P.
Agrawal
, and
J. T.
Machado
,
Advances in Fractional Calculus
(
Springer
,
NY
,
2007
).
4.
C.
Li
and
F.
Zeng
,
Numerical Methods for Fractional Calculus
(
CRC Press
,
NY
,
2015
).
5.
R. L.
Magin
,
Fractional Calculus in Bioengineering
(
Begell House
,
NY
,
2006
).
6.
F.
Mainardi
,
Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models
(
World Scientific
,
NY
,
2010
).
7.
V. S.
Kiryakova
,
Generalized Fractional Calculus and Applications
(
CRC Press
,
NY
,
1993
).
8.
R.
Herrmann
,
Fractional Calculus: An Introduction for Physicists
(
World Scientific
,
NY
,
2011
).
9.
S.
Momani
, “
An explicit and numerical solutions of the fractional KdV equation
,”
Math. Comput. Simul.
70
(
2
),
110
118
(
2005
).
10.
Q.
Wang
, “
Homotopy perturbation method for fractional KdV equation
,”
Appl. Math. Comput.
190
(
2
),
1795
1802
(
2007
).
11.
S.
Tauseef Mohyud-Din
,
A.
Yildirim
, and
E.
Yülüklü
, “
Homotopy analysis method for space-and time-fractional KdV equation
,”
Int. J. Numer. Methods Heat Fluid Flow
22
(
7
),
928
941
(
2012
).
12.
S.
Momani
,
Z.
Odibat
, and
A.
Alawneh
, “
Variational iteration method for solving the space-and time-fractional KdV equation
,”
Numer. Methods Partial Differ. Equations
24
(
1
),
262
271
(
2008
).
13.
M.
Kurulay
and
M.
Bayram
, “
Approximate analytical solution for the fractional modified KdV by differential transform method
,”
Commun. Nonlinear Sci. Numer. Simul.
15
(
7
),
1777
1782
(
2010
).
14.
J.
Hu
,
Y.
Ye
,
S.
Shen
, and
J.
Zhang
, “
Lie symmetry analysis of the time fractional KdV-type equation
,”
Appl. Math. Comput.
233
,
439
444
(
2014
).
15.
X. J.
Yang
,
Advanced Local Fractional Calculus and Its Applications
(
World Science
,
NY
,
2012
).
16.
X. J.
Yang
,
D.
Baleanu
, and
H. M.
Srivastava
,
Local Fractional Integral Transforms and Their Applications
(
Academic Press
,
NY
,
2015
).
17.
X. J.
Yang
 et al, “
Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives
,”
Phys. Lett. A
377
(
28
),
1696
1700
(
2013
).
18.
H. Y.
Liu
,
J. H.
He
, and
Z. B.
Li
, “
Fractional calculus for nanoscale flow and heat transfer
,”
Int. J. Numer. Methods Heat Fluid Flow
24
(
6
),
1227
1250
(
2014
).
19.
X. J.
Yang
and
H. M.
Srivastava
, “
An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives
,”
Commun. Nonlinear Sci. Numer. Simul.
29
(
1
),
499
504
(
2015
).
20.
X. J.
Yang
,
J. T.
Machado
, and
J.
Hristov
, “
Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow
,”
Nonlinear Dyn.
84
(
1
),
3
7
(
2016
).
21.
X. J.
Yang
,
D.
Baleanu
, and
H. M.
Srivastava
, “
Local fractional similarity solution for the diffusion equation defined on Cantor sets
,”
Appl. Math. Lett.
47
,
54
60
(
2015
).
22.
S. P.
Yan
, “
Local fractional Laplace series expansion method for diffusion equation arising in fractal heat transfer
,”
Therm. Sci.
19
(S
1
),
131
135
(
2015
).
23.
H.
Jafari
,
H.
Tajadodi
, and
J. S.
Johnston
, “
A decomposition method for solving diffusion equations via local fractional time derivative
,”
Therm. Sci.
19
(S
1
),
123
129
(
2015
).
24.
Y.
Zhang
,
H. M.
Srivastava
, and
M.-C.
Baleanu
, “
Local fractional variational iteration algorithm II for non-homogeneous model associated with the non-differentiable heat flow
,”
Adv. Mech. Eng.
7
(
10
),
1
5
(
2015
).
25.
A. M.
Wazwaz
,
Partial Differential Equations and Solitary Waves Theory
(
Springer
,
NY
,
2010
).
You do not currently have access to this content.