The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.

1.
A.
Goldsmith
,
Wireless Communications
(
Cambridge University Press
,
Cambridge, England
,
2005
).
2.
N. F.
Rulkov
,
M. M.
Sushchik
,
L. S.
Tsimring
, and
A. R.
Volkovskii
, “
Digital communication using chaotic-pulse-position modulation
,”
IEEE Trans. Circuits Syst. I
48
(
12
),
1436
1444
(
2001
).
3.
J.
Yu
and
Y. D.
Yao
, “
Detection performance of chaotic spreading LPI waveforms
,”
IEEE Trans. Wireless Commun.
4
(
2
),
390
396
(
2005
).
4.
G.
Kaddoum
, “
Wireless chaos-based communication systems: A comprehensive survey
,”
IEEE Access
4
,
2621
2648
(
2016
).
5.
N. J.
Corron
and
J. N.
Blakely
, “
Chaos in optimal communication waveforms
,”
Proc. R. Soc. A
471
,
20150222
(
2015
).
6.
P.
Giard
,
G.
Kaddoum
,
F.
Gagnon
, and
C.
Thibeault
, “
FPGA implementation and evaluation of discrete-time chaos generator circuits
,” in
Proceedings of IEEE Industrial Electronics Society
, Montreal, Canada (
2012
), pp.
3221
3224
.
7.
G.
Kaddoum
,
J.
Olivain
,
G. B.
Samson
, and
P.
Giard
, “
Implementation of a differential chaos shift keying communication system in GNU radio
,” in
Proceedings of IEEE International Symposium on Wireless Communication Systems (ISWCS)
, Paris, France (
2012
), pp.
934
938
.
8.
S. T.
Hayes
,
C.
Grebogi
, and
E.
Ott
, “
Communication with chaos
,”
Phys. Rev. Lett.
70
,
3031
3034
(
1993
).
9.
S. T.
Hayes
,
C.
Grebogi
, and
E.
Ott
, “
Experimental control of chaos for communication
,”
Phys. Rev. Lett.
73
,
1781
1784
(
1994
).
10.
A.
Argyris
,
D.
Syvridis
,
L.
Larger
,
V.
Annovazazi-Lodi
 et al, “
Chaos-based communications at high bit rates using commercial fibre-optic links
,”
Nature
438
(
7066
),
343
346
(
2005
).
11.
M. L.
Barakat
,
A. S.
Mansingka
,
A. G.
Radwan
, and
K. N.
Salama
, “
Hardware stream cipher with controllable chaos generator for colour image encryption
,”
IET Image Process.
8
(
1
),
33
43
(
2014
).
12.
K. S.
Halle
,
W. J.
Chaiwah
,
M.
Itoh
 et al, “
Spread spectrum communication through modulation of chaos
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
3
,
469
477
(
1993
).
13.
J. K.
White
and
J. V.
Moloney
, “
Multichannel communication using an infinite dimensional spatiotemporal chaotic system
,”
Phys. Rev. A
59
,
2422
2426
(
1999
).
14.
G.
Kolumbán
, “
Theoretical noise performance of correlator-based chaotic communication scheme
,”
IEEE Trans. Circuits Syst. I
47
(
12
),
1692
1701
(
2000
).
15.
G.
Kolumbán
,
B.
Vizvri
,
W.
Schwarz
, and
A.
Abel
, “
Differential chaos shift keying: A robust coding for chaos communication
,” in
Proceedings of International Workshop on Nonlinear Dynamics of Electronic Systems
(
1996
), pp.
87
92
.
16.
G.
Kolumbán
,
G.
Kis
,
M. P.
Kennedy
, and
Z.
Jako
, “
FM-DCSK: A new and robust solution to chaos communications
,” in
Proceedings of International Symbol Nonlinear Theory and Its Application
, Hawaii, USA (
1997
), pp.
117
120
.
17.
S.
Wang
and
X.
Wang
, “
M-DCSK-based chaotic communication in MIMO multipath channels with no channel state information
,”
IEEE Trans. Circuits Syst. II
57
(
12
),
1001
1005
(
2010
).
18.
G.
Kaddoum
and
E.
Soujeri
, “
NR-DCSK: A noise reduction differential chaos shift keying system
,”
IEEE Trans. Circuits Syst. II
63
,
648
(
2016
).
19.
G.
Kaddoum
,
E.
Soujieri
,
C.
Arcila
, and
K.
Eshteiwi
, “
I-DCSK: An improved noncoherent communication system architecture
,”
IEEE Trans. Circuits Syst. II
62
(
9
),
901
905
(
2015
).
20.
C.
Bai
,
H. P.
Ren
, and
J.
Li
, “
A hybrid system based DCSK for underwater acoustic communication
,” in
Proceedings of IEEE China Ocean Acoustic Symposium
, Harbin, China, 9–11 January
2016
, pp.
238
241
.
21.
H. P.
Ren
,
Q. J.
Kong
, and
C.
Bai
, “
A chaotic spread spectrum system for underwater acoustic communication
,” in
Proceedings of IEEE International Wireless Symposium
, Shenzhen (
2015
), pp.
1
4
.
22.
H. F.
Cao
,
R. X.
Zhang
, and
F. L.
Yan
, “
Spread spectrum communication and its circuit implementation using fractional-order chaotic system via a single driving variable
,”
Commun. Nonlinear Sci. Numer. Simul.
18
(
2
),
341
350
(
2013
).
23.
D. S.
Swami
and
K. K.
Sarma
, “
A logistic map based PN sequence generator for direct-sequence spread-spectrum modulation system
,” in
Proceedings of IEEE International Conference Signal Processing and Integrated Networks
, Noida (
2014
), pp.
780
784
.
24.
L.
Wang
,
C. X.
Zhang
, and
G. R.
Chen
, “
Performance of an SIMO FM-DCSK communication system
,”
IEEE Trans. Circuits Syst. II
55
(
5
),
457
461
(
2008
).
25.
N. J.
Corron
and
J. N.
Blakely
, “
Analytically solvable chaotic oscillator based on a first-order filter
,”
Chaos
26
,
023104
(
2016
).
26.
N. J.
Corron
,
J. N.
Blakely
, and
M. T.
Stahl
, “
A matched filter for chaos
,”
Chaos
20
(
2
),
023123
(
2010
).
27.
H. P.
Ren
,
M. S.
Baptista
, and
C.
Grebogi
, “
Wireless communication with chaos
,”
Phys. Rev. Lett.
110
,
184101
(
2013
).
28.
H. P.
Ren
,
M. S.
Baptista
, and
C.
Grebogi
, “
Uncovering missing symbols in communication with filtered chaotic signals
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
22
(
8
),
1250199
(
2012
).
29.
M. S.
Baptista
,
M. B.
Reyes
,
J. C.
Sartorelli
, and
C.
Grebogi
, “
Communication-based on topology preservation of chaotic dynamics
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
13
(
9
),
2551
2560
(
2003
).
30.
C.
Grebogi
,
M. S.
Baptista
, and
H. P.
Ren
, “
Wireless communication method
,”
United Kingdom patent application 1307830.8
(11 May
2015
).
31.
H. P.
Ren
,
M. S.
Baptista
, and
C.
Grebogi
, “
A wireless communication and transmission encoding method
,”
Chinese patent application 201410203969.9
(14 May
2014
).
32.
H. P.
Ren
and
W. C.
Li
, “
Heteroclinic orbits in Chen circuit with time delay
,”
Commun. Nonlinear Sci. Numer. Simul.
15
(
10
),
3058
3066
(
2010
).
33.
E.
Bollt
and
Y. C.
Lai
, “
Dynamics of coding in communicating with chaos
,”
Phys. Rev. E
58
(
2
),
1724
1736
(
1998
).
You do not currently have access to this content.