The mechanical and electrical properties, and information processing capabilities of microtubules are the permanent subject of interest for carrying out experiments in vitro and in silico, as well as for theoretical attempts to elucidate the underlying processes. In this paper, we developed a new model of the mechano–electrical waves elicited in the rows of very flexible C–terminal tails which decorate the outer surface of each microtubule. The fact that C–terminal tails play very diverse roles in many cellular functions, such as recruitment of motor proteins and microtubule–associated proteins, motivated us to consider their collective dynamics as the source of localized waves aimed for communication between microtubule and associated proteins. Our approach is based on the ferroelectric liquid crystal model and it leads to the effective asymmetric double-well potential which brings about the conditions for the appearance of kink–waves conducted by intrinsic electric fields embedded in microtubules. These kinks can serve as the signals for control and regulation of intracellular traffic along microtubules performed by processive motions of motor proteins, primarly from kinesin and dynein families. On the other hand, they can be precursors for initiation of dynamical instability of microtubules by recruiting the proper proteins responsible for the depolymerization process.

1.
P.
Dustin
,
Microtubules
(
Springer
,
Berlin
,
1984
).
2.
V.
Hunyadi
,
D.
Chretien
,
H.
Flyvbjerg
, and
I. M.
Janosi
,
Biol. Cell
99
,
117
(
2007
).
3.
E.
Mandelkow
and
J.
Johnson
,
Trends Biochem. Sci.
23
,
429
(
1998
).
4.
H. W.
Wang
and
E.
Nogales
,
Nature
435
,
911
(
2005
).
5.
J. A.
Tuszynski
,
S.
Hameroff
,
M. V.
Sataric
,
B.
Trpisova
, and
M. L. A.
Nip
,
J. Theor. Biol.
174
,
371
(
1995
).
6.
J. A.
Tuszynski
,
J. A.
Brown
,
E.
Crawford
,
E. J.
Carpenter
,
M. L. A.
Nip
,
J. M.
Dixon
, and
M. V.
Sataric
,
Math. Comput. Modell.
41
,
1055
(
2005
).
7.
Y.
Fukuda
,
A.
Luchniak
,
E. R.
Murphy
, and
M. L.
Gupta
,
Curr. Biol.
24
,
1826
(
2014
).
8.
L.
Peris
,
M.
Wagenbach
,
L.
Lafanechère
,
J.
Brocard
,
A. T.
Moore
,
F.
Kozielski
,
D.
Job
,
L.
Wordeman
, and
A.
Andrieux
,
J. Cell Biol.
185
,
1159
(
2009
).
9.
L. J.
Gagliardi
,
Phys. Rev. E
66
,
011901
(
2002
).
10.
E.
Nogales
,
S. G.
Wolf
, and
K. H.
Downing
,
Nature
391
,
199
(
1998
).
11.
M. A.
Jimenez
,
J. A.
Evangelio
,
C.
Aranda
,
A.
Lopez–Brauet
,
D.
Andreu
,
M.
Rico
,
R.
Lagos
,
J. M.
Andreu
, and
O.
Monasterio
,
Protein Sci.
8
,
788
(
1999
).
12.
J. E.
Schoutens
,
J. Biol. Phys.
31
,
35
(
2005
).
13.
U. Z.
Littauer
,
D.
Giveon
,
M.
Thierauf
,
I.
Ginzburg
, and
H.
Ponstingl
,
Proc. Natl. Acad. Sci. U.S.A.
83
,
7162
(
1986
).
14.
C. P.
Garnham
and
A.
Roll-Mecak
,
Cytoskeleton
69
,
442
(
2012
).
15.
C.
Janke
,
J. Cell Biol.
206
,
461
(
2014
).
16.
M.
Sirajuddin
,
L. M.
Rice
, and
R. D.
Vale
,
Nat. Cell Biol.
16
,
335
(
2014
).
17.
I.
Yu
,
C. P.
Garnham
, and
A.
Roll-Mecak
,
J. Biol. Chem.
290
,
17163
(
2015
).
18.
M. V.
Sataric
,
D. I.
Ilic
,
N.
Ralevic
, and
J. A.
Tuszynski
,
Eur. Biophys. J.
38
,
637
(
2009
).
19.
D. L.
Sekulic
,
B. M.
Sataric
,
J. A.
Tuszynski
, and
M. V.
Sataric
,
Eur. Phys. J. E
34
,
49
(
2011
).
20.
A.
Priel
,
J. A.
Tuszynski
, and
N. J.
Woolf
,
Eur. Biophys. J.
35
,
40
(
2005
).
21.
H.
Freedman
,
V.
Rezania
,
A.
Priel
,
E.
Carpenter
,
S. Y.
Noskov
, and
J. A.
Tuszynski
,
Phys. Rev. E
81
,
051912
(
2010
).
22.
J. W.
Goodby
,
Ferroelectric Liquid Crystals: Principles, Properties and Applications
(
Gordon and Breach Science Publishers
,
New York
,
1991
).
23.
M. V.
Sataric
and
J. A.
Tuszynski
,
Phys. Rev. E
67
,
011901
(
2003
).
24.
P.
Das
and
W. H.
Schwarz
,
Phys. Rev. E
51
,
3588
(
1995
).
25.
J. A.
Tuszynski
,
J. A.
Brown
,
E. J.
Carpenter
,
E.
Crawford
, and
M. L. A.
Nip
, in
Proceedings of the ESA–IEJ Joint Meeting, Chicago, 2002
, p.
41
.
26.
J. A.
Brown
, Ph.D. thesis,
University of Alberta, Edmonton
,
1994
.
27.
T.
Carlsson
,
I. W.
Stewart
, and
F. M.
Leslie
,
Liq. Cryst.
11
,
49
(
1992
).
28.
L.
Cassimeris
and
C.
Spittle
,
Int. Rev. Cytol.
210
,
163
(
2001
).
29.
D.
Georgiev
and
J. F.
Glazebrook
,
Neuroquantology
5
,
62
(
2007
).
30.
M.
Sataric
,
Bull. Acad. Serbe Sci. Arts, Cl. Sci. Math. Nat.
39
,
1
(
2014
).
31.
F.
Brochard
and
J. F.
Lennon
,
J. Phys.
36
,
1035
(
1975
).
32.
A.
Mershin
,
A. A.
Kolomenski
,
H. A.
Schuessler
, and
D. V.
Nanopoulos
,
Biosystems
77
,
73
(
2004
).
33.
A.-M.
Wazwaz
,
Appl. Math. Comput.
154
,
713
(
2004
).
34.
D. L.
Sekulic
,
M. V.
Sataric
,
M. B.
Zivanov
, and
J. S.
Bajic
,
Elektron. Elektrotech.
121
,
53
(
2012
).
35.
R.
FitzHugh
,
Biophys. J.
1
,
445
(
1961
).
36.
M. V.
Sataric
,
L.
Matsson
, and
J. A.
Tuszynski
,
Phys. Rev. E
74
,
051902
(
2006
).
37.
L. A.
Amos
and
D.
Schlieper
,
Adv. Protein Chem.
71
,
257
(
2005
).
38.
B.
Fichtl
,
S.
Shrivastava
, and
M. F.
Schneider
,
Sci. Rep.
6
,
22874
(
2016
).
39.
S.
Sahu
,
S.
Ghosh
,
K.
Hirata
,
D.
Fujita
, and
A.
Bandyopadhyay
,
Appl. Phys. Lett.
102
,
123701
(
2013
).
40.
Y.
Konishi
and
M.
Setou
,
Nat. Neurosci.
12
,
559
(
2009
).
41.
A.
Roll-Mecak
,
Semin. Cell Dev. Biol.
37
,
11
(
2015
).
42.
L.
Matsson
,
J. Phys.: Condens. Matter
21
,
502101
(
2009
);
[PubMed]
L.
Matsson
,
J. Phys.: Condens. Matter
26
,
155102
(
2014
).
[PubMed]
You do not currently have access to this content.