We construct a piecewise-linear (PWL) approximation of the Hindmarsh-Rose (HR) neuron model that is minimal, in the sense that the vector field has the least number of linearity zones, in order to reproduce all the dynamics present in the original HR model with classical parameter values. This includes square-wave bursting and also special trajectories called canards, which possess long repelling segments and organise the transitions between stable bursting patterns with n and n + 1 spikes, also referred to as spike-adding canard explosions. We propose a first approximation of the smooth HR model, using a continuous PWL system, and show that its fast subsystem cannot possess a homoclinic bifurcation, which is necessary to obtain proper square-wave bursting. We then relax the assumption of continuity of the vector field across all zones, and we show that we can obtain a homoclinic bifurcation in the fast subsystem. We use the recently developed canard theory for PWL systems in order to reproduce the spike-adding canard explosion feature of the HR model as studied, e.g., in Desroches et al., Chaos 23(4), 046106 (2013).

1.
A.
Andronov
,
A.
Vitt
, and
S.
Khaikin
,
Theory of Oscillators
(
Pergamon Press
,
Oxford
,
1966
).
2.
N.
Arima
,
H.
Okazaki
, and
H.
Nakano
, “
A generation mechanism of canards in a piecewise linear system
,”
IEICE Trans. Fundam. Electr.
80
(
3
),
447
453
(
1997
).
3.
F.
Battelli
and
M.
Feckan
, “
Nonsmooth homoclinic orbits, Melnikov functions and chaos in discontinuous systems
,”
Phys. D
241
(
22
),
1962
1975
(
2012
).
4.
E.
Benoît
,
J.-L.
Callot
,
F.
Diener
, and
M.
Diener
, “
Chasse au canard
,”
Collect. Math.
32
(
1–2
),
37
119
(
1981
).
5.
M.
Brøns
, “
Bifurcations and instabilities in the Greitzer model for compressor system surge
,”
Math. Eng. Ind.
2
(
1
),
51
63
(
1988
).
6.
J.
Burke
,
M.
Desroches
,
A. M.
Barry
,
T. J.
Kaper
, and
M. A.
Kramer
, “
A showcase of torus canards in neuronal bursters
,”
J. Math. Neurosci.
2
(
3
) (
2012
).
7.
V.
Carmona
, “
Bifurcaciones en sistemas dinámicos lineales a trozos
,” Ph.D. thesis, Universidad de Sevilla (
2002
) [In Spanish].
8.
V.
Carmona
,
S.
Fernández-García
,
E.
Freire
, and
F.
Torres
, “
Melnikov theory for a class of planar hybrid systems
,”
Phys. D
248
(
1
),
44
54
(
2013
).
9.
V.
Carmona
,
E.
Freire
,
E.
Ponce
, and
F.
Torres
, “
On simplifying and classifying piecewise-linear systems
,”
IEEE Trans. Circuits Syst. I. Regul. Pap.
49
(
5
),
609
620
(
2002
).
10.
S.
Coombes
and
P. C.
Bressloff
,
Bursting: The Genesis of Rhythm in the Nervous System
(
World Scientific
,
Singapore
,
2005
).
11.
O.
De Feo
and
M.
Storace
, “
Piecewise-linear identification of nonlinear dynamical systems in view of their circuit implementations
,”
IEEE Trans. Circuits Syst. I, Reg. Pap. 1
54
(
7
),
1542
1554
(
2007
).
12.
B.
Deng
, “
Metastability and plasticity in some conceptual models of neurons
,”
J. Integr. Neurosci.
9
(
01
),
31
47
(
2010
).
13.
M.
Desroches
,
T. J.
Kaper
, and
M.
Krupa
, “
Mixed-mode bursting oscillations: Dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster
,”
Chaos
23
(
4
),
046106
(
2013
).
14.
M.
Desroches
,
E.
Freire
,
S. J.
Hogan
,
E.
Ponce
, and
P.
Thota
, “
Canards in piecewise-linear systems: explosions and super-explosions
,”
Proc. Roy. Soc. A
469
(
2154
),
20120603
(
2013
).
15.
M.
Desroches
,
A.
Guillamon
,
E.
Ponce
,
R.
Prohens
,
S.
Rodrigues
, and
A. E.
Teruel
, “
Canards, folded nodes and mixed-mode oscillations in piecewise-linear slow-fast systems
,”
SIAM Rev.
(in press).
16.
M.
Desroches
,
M.
Krupa
, and
S.
Rodrigues
, “
Spike-adding in parabolic bursters: The role of folded-saddle canards
,”
Physica D
331
,
58
70
(
2016
).
17.
N.
Fenichel
, “
Geometric singular perturbation theory for ordinary differential equations
,”
J. Differ. Equ.
31
(
1
),
53
98
(
1979
).
18.
S.
Fernández-García
, “
Bifurcations of periodic orbits and invariant sets in piecewise linear dynamical systems
,” Ph.D. thesis,
Universidad de Sevilla
(
2012
).
19.
S.
Fernández-García
,
M.
Desroches
,
M.
Krupa
, and
A. E.
Teruel
, “
Canard solutions in planar piecewise linear systems with three zones
,”
Dyn. Syst.
31
(
2
),
173
197
(
2016
).
20.
S.
Fernández-García
,
M.
Desroches
,
M.
Krupa
, and
F.
Clément
, “
A multiple time scale coupling of piecewise linear oscillators. Application to a neuroendocrine system
,”
SIAM J. Appl. Dyn. Syst.
14
(
2
),
643
673
(
2015
).
21.
A. F.
Filippov
,
Differential Equations with Discontinuous Right-Hand Sides
(
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
,
1988
).
22.
E.
Freire
,
E.
Ponce
,
F.
Rodrigo
, and
F.
Torres
, “
Bifurcation sets of continuous piecewise linear systems with two zones
,”
Int. J. Bifurcation Chaos
8
(
11
),
2073
2097
(
1998
).
23.
R.
FitzHugh
, “
Impulses and physiological states in theoretical models of nerve membrane
,”
Biophys. J.
1
(
6
),
445
466
(
1961
).
24.
E.
Freire
,
E.
Ponce
, and
F.
Torres
, “
Canonical discontinuous planar piecewise linear systems
,”
SIAM J. Appl. Dyn. Syst.
11
(
1
),
181
211
(
2012
).
25.
J.
Guckenheimer
and
C.
Kuehn
, “
Computing slow manifolds of saddle type
,”
SIAM J. Appl. Dyn. Syst.
8
(
3
),
854
879
(
2009
).
26.
J. L.
Hindmarsh
and
R. M.
Rose
, “
A model of neural bursting using three coupled first order differential equations
,”
Proc. R. Soc. London B
221
(
1222
),
87
102
(
1984
).
27.
A. L.
Hodgkin
and
A. F.
Huxley
, “
A quantitative description of membrane current and its application to conduction and excitation in nerve
,”
J. Physiol.
117
(
4
),
500
544
(
1952
).
28.
E. M.
Izhikevich
, “
Neural excitability, bursting and spiking
,”
Int. J. Bifurcation Chaos
10
(
6
),
1171
1266
(
2000
).
29.
E. M.
Izhikevich
, “
Synchronization of elliptic bursters
,”
SIAM Rev.
43
(
2
),
315
344
(
2001
).
30.
E. M.
Izhikevich
,
Dynamical Systems in Neuroscience: The Geometry of Excitability
(
MIT Press
,
2007
).
31.
M. A.
Kramer
,
R. D.
Traub
, and
N. J.
Kopell
, “
New dynamics in cerebellar Purkinje cells: Torus canards
,”
Phys. Rev. Lett.
101
(
6
),
068103
(
2008
).
32.
G. A.
Kriegsmann
, “
The rapid bifurcation of the Wien bridge oscillator
,”
IEEE Trans. Circuits Syst.
34
,
1093
1096
(
1987
).
33.
M.
Krupa
and
P.
Szmolyan
, “
Relaxation oscillation and canard explosion
,”
J. Differ. Equ.
174
(
2
),
312
368
(
2001
).
34.
M.
Kunze
,
Non-Smooth Dynamical Systems
, Lecturer Notes on Mathematics (
Springer
,
Berlin
,
2000
).
35.
D.
Linaro
,
A. R.
Champneys
,
M.
Desroches
, and
M.
Storace
, “
Codimension-two homoclinic bifurcations underlying spike adding in the Hindmarsh-Rose burster
,”
SIAM J. Appl. Dyn. Syst.
11
(
3
),
939
962
(
2012
).
36.
J.
Llibre
and
A. E.
Teruel
,
Introduction to the Qualitative Theory of Differential Systems
(
Birkhäuser
,
2014
).
37.
G. M.
Maggio
,
M.
di Bernardo
, and
M. P.
Kennedy
, “
Nonsmooth bifurcations in a piecewise-linear model of the Colpitts oscillator
,”
IEEE Trans. Circuits Syst. I Fund. Theory Appl.
47
,
1160
1177
(
2000
).
38.
A. I.
Mees
and
L. O.
Chua
, “
Transition to bursting via deterministic chaos
,”
IEEE Trans. Circuits Syst.
26
,
235
254
(
1979
).
39.
J.
Nagumo
,
S.
Arimoto
, and
S.
Yoshizawa
, “
An active pulse transmission line simulating nerve axon
,”
Proc. IRE
50
(
10
),
2061
2070
(
1962
).
40.
J.
Rinzel
, “
A formal classification of bursting mechanisms in excitable systems
,” in
Mathematical Topics in Population Biology, Morphogenesis, and Neurosciences
, edited by
E.
Teramoto
and
M.
Yamaguti
, Lecturer Notes on Biomaths Vol. 71 (
Springer-Verlag
,
Berlin
,
1987
).
41.
H. G.
Rotstein
,
S.
Coombes
, and
A. M.
Gheorghe
, “
Canard-like explosion of limit cycles in two-dimensional piecewise-linear models of FitzHugh-Nagumo type
,”
SIAM J. Appl. Dyn. Syst.
11
(
1
),
135
180
(
2012
).
42.
A.
Shilnikov
and
M.
Kolomiets
, “
Methods of the qualitative theory for the Hindmarsh-Rose model: A case study—A tutorial
,”
Int. J. Bifurcation Chaos
18
(
08
),
2141
2168
(
2008
).
43.
M.
Storace
and
O.
De Feo
, “
Piecewise-linear approximation of nonlinear dynamical systems
,”
IEEE Trans. Circuits Syst. I: Regul. Pap.
51
(
4
),
830
842
(
2004
).
44.
M.
Storace
,
D.
Linaro
, and
E.
de Lange
, “
The Hindmarsh-Rose neuron model: Bifurcation analysis and piecewise-linear approximations
,”
Chaos
18
(
3
),
033128
(
2008
).
45.
D.
Terman
, “
Chaotic spikes arising from a model of bursting in excitable membranes
,”
SIAM J. Appl. Math.
51
(
5
),
1418
1450
(
1991
).
46.
C. W.
Wu
,
L.
Pivka
, and
A.
Huang
, “
Lorenz equation and Chua's equation
,”
Int. J. Bifurcation Chaos
6
(
12b
),
2443
2489
(
1996
).
You do not currently have access to this content.