In the present paper, we study the mechanism of formation and bifurcations of highly nonstationary regimes manifested by different energy transport intensities, emerging in an anharmonic trimer model. The basic model under investigation comprises a chain of three coupled anharmonic oscillators subject to localized excitation, where the initial energy is imparted to the first oscillator only. We report the formation of three basic nonstationary transport states traversed by locally excited regimes. These states differ by spatial energy distribution, as well as by the intensity of energy transport along the chain. In the current study, we focus on numerical and analytical investigation of the intricate resonant mechanism governing the inter-state transitions of locally excited regimes. Results of the analytical study are in good agreement with the numerical simulations of the trimer model.

1.
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems
, edited by
A. F.
Vakakis
(
Springer
,
2008
).
2.
K.
Hasselmann
, “
On the non-linear energy transfer in a gravity-wave spectrum. Part 3. Evaluation of the energy flux and swell-sea interaction for a Neumann spectrum
,”
J. Fluid Mech.
15
(
3
),
385
398
(
1963
).
3.
D. J.
Benney
and
P. G.
Saffman
, “
Nonlinear interactions of random waves in a dispersive medium
,”
Proc. R. Soc. A
289
,
301
(
1966
).
4.
D. J.
Benney
and
A. C.
Newell
, “
Random wave closures
,”
Stud. Appl. Math.
48
(
1
),
29
53
(
1969
).
5.
A. C.
Newell
, “
Wave turbulence is almost always intermittent at either small or large scales
,”
Stud. Appl. Math.
108
(
1
),
39
64
(
2002
).
6.
A. C.
Newell
,
S.
Nazarenko
, and
L.
Biven
, “
Wave turbulence and intermittency
,”
Physica D
152
,
520
550
(
2001
).
7.
B. B.
Kadomtsev
,
Plasma Turbulence
(
Acad. Press
,
N. Y.
,
1965
).
8.
Y. V.
Lvov
and
E. G.
Tabak
, “
Hamiltonian formalism and the Garrett-Munk spectrum of internal waves in the ocean
,”
Phys. Rev. Lett.
87
(
16
),
168501
(
2001
).
9.
Y. V.
Lvov
,
R.
Binder
, and
A. C.
Newell
, “
Quantum weak turbulence with applications to semiconductor lasers
,”
Physica D
121
(
3–4
),
317
343
(
1998
).
10.
Y. V.
Lvov
and
A. C.
Newell
, “
Finite flux solutions of the quantum Boltzmann equation and semiconductor lasers
,”
Phys. Rev. Lett.
84
(
9
),
1894
1897
(
2000
).
11.
Y. V.
Lvov
and
A. C.
Newell
, “
Semiconductor lasers and Kolmogorov spectra
,”
Phys. Lett. A
235
(
5
),
499
503
(
1997
).
12.
A. F.
Vakakis
,
L. I.
Manevitch
,
Yu. V.
Mikhlin
,
V. N.
Pilipchuk
, and
A. A.
Zevin
,
Normal Modes and Localization in Nonlinear Systems
(
Springer
,
1996
).
13.
L.
Manevitch
, “
New approach to beating phenomenon in coupled nonlinear oscillatory chains
,”
Arch. Appl. Mech.
77
(
5
),
301
312
(
2007
).
14.
L. I.
Manevitch
,
A. S.
Kovaleva
,
E. L.
Manevitch
, and
D. S.
Shepelev
, “
Limiting phase trajectories and non-stationary resonance oscillations of the Duffing oscillator. Part 1. A non-dissipative oscillator
,”
Commun. Nonlinear Sci. Numer. Simul.
16
(
2
),
1089
1097
(
2011
).
15.
L. I.
Manevitch
,
A. S.
Kovaleva
,
E. L.
Manevitch
, and
D. S.
Shepelev
, “
Limiting phase trajectories and nonstationary resonance oscillations of the Duffing oscillator. Part 2. A dissipative oscillator
,”
Commun. Nonlinear Sci. Numer. Simul.
16
(
2
),
1098
1105
(
2011
).
16.
T.
Dauxois
,
A.
Litvak-Hinenzon
,
R.
MacKay
, and
A.
Spanoudaki
,
Energy Localisation and Transfer
(
World Scientific
,
2004
).
17.
Y.
Starosvetsky
and
L. I.
Manevitch
, “
Nonstationary regimes in a Duffing oscillator subject to biharmonic forcing near a primary resonance
,”
Phys. Rev. E
83
(
4
),
046211
(
2011
).
18.
L. I.
Manevitch
,
M. A.
Kovaleva
, and
V. N.
Pilipchuk
, “
Non-conventional synchronization of weakly coupled active oscillators
,”
Europhys. Lett.
101
(
5
),
50002
(
2013
).
19.
L. I.
Manevitch
and
A. I.
Musienko
, “
Limiting phase trajectories and energy exchange between anharmonic oscillator and external force
,”
Nonlinear Dyn.
58
(
4
),
633
642
(
2009
).
20.
L.
Manevitch
and
A.
Kovaleva
, “
Nonlinear energy transfer in classical and quantum systems
,”
Phys. Rev. E
87
(
2
),
022904
(
2013
).
21.
L. I.
Manevitch
and
O. V.
Gendelman
,
Tractable Models of Solid Mechanics
(
Springer
,
2011
).
22.
Y.
Starosvetsky
and
Y.
Ben-Meir
, “
Nonstationary regimes of homogeneous Hamiltonian systems in the state of sonic vacuum
,”
Phys. Rev. E
87
(
6
),
062919
(
2013
).
23.
A.
Kovaleva
,
L.
Manevitch
, and
E.
Manevitch
, “
Intense energy transfer and superharmonic resonance in a system of two coupled oscillators
,”
Phys. Rev. E
81
(
5
),
056215
(
2010
).
24.
L. I.
Manevich
and
V. V.
Smirnov
, “
Localized nonlinear excitations and interchain energy exchange in the case of weak coupling
,” in
Modeling, Simulation and Control of Nonlinear Engineering Dynamical Systems
, edited by
J.
Awrejcewicz
(
Springer
,
2009
), pp.
37
47
.
25.
L. I.
Manevitch
and
V. V.
Smirnov
, “
Limiting phase trajectories and the origin of energy localization in nonlinear oscillatory chains
,”
Phys. Rev. E
82
(
3
),
036602
(
2010
).
26.
L. I.
Manevitch
and
V. V.
Smirnov
, “
CISM courses and lectures: Resonant energy exchange in nonlinear oscillatory chains and limiting phase trajectories: from small to large systems
,” in
Advanced Nonlinear Strategies for Vibration Mitigation and System Identification
, edited by
A. F.
Vakakis
(
Springer
,
2010
), pp.
207
258
.
27.
A.
Kovaleva
and
L. I.
Manevitch
, “
Classical analog of quasilinear Landau-Zener tunneling
,”
Phys. Rev. E
85
(
1
),
16202
(
2012
).
28.
A.
Kovaleva
and
L. I.
Manevitch
, “
Limiting phase trajectories and emergence of autoresonance in nonlinear oscillators
,”
Phys. Rev. E
88
(
2
),
024901
(
2013
).
29.
A.
Kovaleva
,
L. I.
Manevitch
, and
Y. A.
Kosevich
, “
Fresnel integrals and irreversible energy transfer in an oscillatory system with time-dependent parameters
,”
Phys. Rev. E
83
(
2
),
26602
(
2011
).
30.
L. I.
Manevitch
,
G.
Sigalov
,
F.
Romeo
,
L. A.
Bergman
, and
A.
Vakakis
, “
Dynamics of a linear oscillator coupled to a bistable light attachment: Analytical study
,”
J. Appl. Mech.
81
(
4
),
041011
(
2013
).
31.
V. N.
Pilipchuk
,
Nonlinear Dynamics: Between Linear and Impact Limits
(
Springer
,
2010
).
32.
V.
Pilipchuk
, “
Asymptotic of ‘rigid-body’ motions for nonlinear dynamics: Physical insight and methodologies
,” in
Applied Non-Linear Dynamical Systems
, edited by
J.
Awrejcewicz
(
Springer
,
2014
), pp.
11
22
.
33.
V. N.
Pilipchuk
, “
NSTT for linear and piecewise-linear systems
,” in
Nonlinear Dynamics
(
Springer
,
2010
), pp.
145
178
.
34.
V. N.
Pilipchuk
, “
NSTT and shooting method for periodic motions
,” in
Nonlinear Dynamics
(
Springer
,
2010
), pp.
275
294
.
35.
M. A.
Kovaleva
,
L. I.
Manevich
, and
V. N.
Pilipchuk
, “
New type of synchronization of oscillators with hard excitation
,”
J. Exp. Theor. Phys.
117
(
2
),
369
377
(
2013
).
You do not currently have access to this content.