This paper presents some mathematical models for distribution of goods in logistic networks based on spectral analysis of complex networks. Given a steady distribution of a finished product, some numerical algorithms are presented for computing the weights in a multiplex logistic network that reach the equilibrium dynamics with high convergence rate. As an application, the logistic networks of Germany and Spain are analyzed in terms of their convergence rates.
References
1.
2.
D.
Avis
and K.
Fukuda
, Discrete Comput. Geom.
8
(3
), 295
–313
(1992
).3.
S.
Boccaletti
, G.
Bianconi
, R.
Criado
, C. I.
del Genio
, J.
Gómez-Gardeñes
, M.
Romance
, I.
Sendiña-Nadal
, Z.
Wang
, and M.
Zanin
, Phys. Rep.
544
, 1
–122
(2014
).4.
S.
Boccaletti
, V.
Latora
, Y.
Moreno
, M.
Chavez
, and D.-U.
Hwang
, Phys. Rep.
424
, 175
–308
(2006
).5.
M. S.
Bazaraa
, H. D.
Sherali
, and C. M.
Shetty
, Nonlinear Programming: Theory and Algorithms
(John Wiley & Sons
, 2013
).6.
G. H.
Golub
and C. F.
Van Loan
, Matrix Computations
, 4th ed., Johns Hopkins Studies in the Mathematical Sciences (Johns Hopkins University Press
, Baltimore, MD
, 2013
).7.
D. M.
Lambert
and M. C.
Cooper
, Ind. Mark. Manage.
29
(1
), 65
–83
(2000
).8.
T. H.
Matheiss
and D. S.
Rubin
, Math. Oper. Res.
5
(2
), 167
–185
(1980
).9.
10.
P. M.
Reyes
, Appl. Math. Comput.
168
, 1419
–1431
(2005
).11.
D.
Simchi-Levi
, P.
Kaminsky
, and E.
Simchi-Levi
, Designing and Managing the Supply Chain: Concepts, Strategies and Cases
, 2nd ed. (McGraw-Hill
, New York, NY
, 2003
).12.
R. E.
Tarjan
, SIAM J. Comput.
1
(2
), 146
–160
(1972
).© 2016 Author(s).
2016
Author(s)
You do not currently have access to this content.