Trophic coherence, a measure of the extent to which the nodes of a directed network are organised in levels, has recently been shown to be closely related to many structural and dynamical aspects of complex systems, including graph eigenspectra, the prevalence or absence of feedback cycles, and linear stability. Furthermore, non-trivial trophic structures have been observed in networks of neurons, species, genes, metabolites, cellular signalling, concatenated words, P2P users, and world trade. Here, we consider two simple yet apparently quite different dynamical models—one a susceptible-infected-susceptible epidemic model adapted to include complex contagion and the other an Amari-Hopfield neural network—and show that in both cases the related spreading processes are modulated in similar ways by the trophic coherence of the underlying networks. To do this, we propose a network assembly model which can generate structures with tunable trophic coherence, limiting in either perfectly stratified networks or random graphs. We find that trophic coherence can exert a qualitative change in spreading behaviour, determining whether a pulse of activity will percolate through the entire network or remain confined to a subset of nodes, and whether such activity will quickly die out or endure indefinitely. These results could be important for our understanding of phenomena such as epidemics, rumours, shocks to ecosystems, neuronal avalanches, and many other spreading processes.

1.
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D.-U.
Hwang
, “
Complex networks: Structure and dynamics
,”
Phys. Rep.
424
(
4
),
175
308
(
2006
).
2.
A.
Arenas
,
A.
Díaz-Guilera
,
J.
Kurths
,
Y.
Moreno
, and
C.
Zhou
, “
Synchronization in complex networks
,”
Phys. Rep.
469
(
3
),
93
153
(
2008
).
3.
A.
Barrat
,
M.
Barthelemy
, and
A.
Vespignani
,
Dynamical Processes on Complex Networks
(
Cambridge University Press
,
2008
).
4.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of ‘small-world’ networks
,”
Nature
393
,
440
442
(
1998
).
5.
C.
Moore
and
M. E.
Newman
, “
Epidemics and percolation in small-world networks
,”
Phys. Rev. E
61
(
5
),
5678
(
2000
).
6.
M. J.
Keeling
and
K. T. D.
Eames
, “
Networks and epidemic models
,”
J. R. Soc., Interface/R. Soc.
2
,
295
307
(
2005
).
7.
R.
Durrett
, “
Some features of the spread of epidemics and information on a random graph
,”
Proc. Natl. Acad. Sci. U.S.A.
107
,
4491
4498
(
2010
).
8.
L.
Danon
,
A. P.
Ford
,
T.
House
,
C. P.
Jewell
,
M. J.
Keeling
,
G. O.
Roberts
,
J. V.
Ross
, and
M. C.
Vernon
, “
Networks and the epidemiology of infectious disease
,”
Interdiscip. Perspect. Infect. Dis.
2011
,
e284909
(
2011
).
9.
T.
House
, “
Modelling epidemics on networks
,”
Contemp. Phys.
53
,
213
225
(
2012
).
10.
R.
Pastor-Satorras
,
C.
Castellano
,
P.
Van Mieghem
, and
A.
Vespignani
, “
Epidemic processes in complex networks
,”
Rev. Mod. Phys.
87
,
925
979
(
2015
).
11.
D.
Centola
, “
The spread of behavior in an online social network experiment
,”
Science
329
(
5996
),
1194
1197
(
2010
).
12.
D. J. P.
O'sullivan
,
G. J.
O'Keeffe
,
P. G.
Fennell
, and
J. P.
Gleeson
, “
Mathematical modeling of complex contagion on clustered networks
,”
Interdiscip. Phys.
3
,
71
(
2015
).
13.
K.
Suchecki
,
V. M.
Eguíluz
, and
M.
San Miguel
, “
Voter model dynamics in complex networks: Role of dimensionality, disorder, and degree distribution
,”
Phys. Rev. E
72
(
3
),
036132
(
2005
).
14.
V.
Sood
,
T.
Antal
, and
S.
Redner
, “
Voter models on heterogeneous networks
,”
Phys. Rev. E
77
(
4
),
041121
(
2008
).
15.
C.
Castellano
,
M. A.
Muñoz
, and
R.
Pastor-Satorras
, “
Nonlinear q-voter model
,”
Phys. Rev. E
80
(
4
),
041129
(
2009
).
16.
P.
Moretti
,
S.
Liu
,
C.
Castellano
, and
R.
Pastor-Satorras
, “
Mean-field analysis of the q-voter model on networks
,”
J. Stat. Phys.
151
(
1–2
),
113
130
(
2013
).
17.
S.
Johnson
,
J.
Marro
, and
J. J.
Torres
, “
Functional optimization in complex excitable networks
,”
Europhys. Lett.
83
(
4
),
46006
(
2008
).
18.
S.
de Franciscis
,
S.
Johnson
, and
J. J.
Torres
, “
Enhancing neural-network performance via assortativity
,”
Phys. Rev. E
83
(
3
),
036114
(
2011
).
19.
S.
Johnson
,
J.
Marro
, and
J. J.
Torres
, “
Robust short-term memory without synaptic learning
,”
PloS one
8
(
1
),
e50276
(
2013
).
20.
J.
White
,
E.
Southgate
,
J.
Thomson
, and
S.
Brenner
, “
The structure of the nervous system of the nematode caenorhabditis elegans: The mind of a worm
,”
Philos. Trans. R. Soc. London, Ser. A
314
,
1
340
(
1986
).
21.
S.
Song
,
P. J.
Sjstrm
,
M.
Reigl
,
S.
Nelson
, and
D. B.
Chklovskii
, “
Highly nonrandom features of synaptic connectivity in local cortical circuits
,”
PLoS Biol.
3
,
e68
(
2005
).
22.
C. J.
Honey
,
R.
Kötter
,
M.
Breakspear
, and
O.
Sporns
, “
Network structure of cerebral cortex shapes functional connectivity on multiple time scales
,”
Proc. Natl. Acad. Sci. U.S.A.
104
(
24
),
10240
10245
(
2007
).
23.
S.
Johnson
,
J.
Marro
, and
J. J.
Torres
, “
Evolving networks and the development of neural systems
,”
J. Stat. Mech.: Theory Exp.
2010
(
03
),
P03003
.
24.
R.
Perin
,
T. K.
Berger
, and
H.
Markram
, “
A synaptic organizing principle for cortical neuronal groups
,”
Proc. Natl. Acad. Sci. U.S.A.
108
(
13
),
5419
5424
(
2011
).
25.
R.
Perin
,
M.
Telefont
, and
H.
Markram
, “
Computing the size and number of neuronal clusters in local circuits
,”
Front. Neuroanatomy
7
(
1
) (
2013
).
26.
S.
Johnson
,
V.
Domínguez-García
,
L.
Donetti
, and
M. A.
Muñoz
, “
Trophic coherence determines food-web stability
,”
Proc. Natl. Acad. Sci. U.S.A.
111
(
50
),
17923
17928
(
2014
).
27.
R. M.
May
, “
Will a large complex system be stable?
,”
Nature
238
,
413
414
(
1972
).
28.
R. M.
May
,
Stability and Complexity in Model Ecosystems
(
Princeton University Press
,
Princeton, USA
,
1973
).
29.
K. S.
McCann
, “
The diversity-stability debate
,”
Nature
405
,
228
233
(
2000
).
30.
M. M.
Pires
,
P. L.
Koch
,
R. A.
Fariña
,
M. A. M.
de Aguiar
,
S. F.
dos Reis
, and
P. R.
Guimarães
, “
Pleistocene megafaunal interaction networks became more vulnerable after human arrival
,”
Proc. R. Soc. London, Ser. B
282
(
1814
) (
2015
).
31.
S.
Johnson
and
N. S.
Jones
, “
Spectra and cycle structure of trophically coherent graphs
,” (submitted).
32.
V.
Domínguez-García
,
S.
Pigolotti
, and
M. A.
Muñoz
, “
Inherent directionality explains the lack of feedback loops in empirical networks
,”
Sci. Rep.
4
,
7497
(
2014
).
33.
V.
Domínguez-García
,
S.
Johnson
, and
M. A.
Muñoz
, “
Intervality and coherence in complex networks
,”
Chaos
26
,
065308
(
2016
).
34.
S.-I.
Amari
, “
Characteristics of random nets of analog neuron-like elements
,”
IEEE Trans. Syst. Man Cybern.
5
(
5
),
643
657
(
1972
).
35.
J. J.
Hopfield
, “
Neural networks and physical systems with emergent collective computational abilities
,”
Proc. Natl. Acad. Sci. U.S.A.
79
(
8
),
2554
2558
(
1982
).
36.
D. J.
Amit
,
Modeling Brain Function: The World of Attractor Neural Networks
(
Cambridge University Press
,
1992
).
37.
S.
Levine
, “
Several measures of trophic structure applicable to complex food webs
,”
J. Theor. Biol.
83
,
195
207
(
1980
).
38.
M. E. J.
Newman
, “
The structure and function of complex networks
,”
SIAM Rev.
45
,
167
256
(
2003
).
39.
J. E.
Cohen
,
Food Webs and Niche Space
(
Princeton University Press
,
Princeton, New Jersey
,
1978
).
40.
D. B.
Stouffer
,
J.
Camacho
,
R.
Guimerà
,
C. A.
Ng
, and
L. A. N.
Amaral
, “
Quantitative patterns in the structure of model and empirical food webs
,”
Ecology
86
,
1301
1311
(
2005
).
41.
B.
Bollobas
and
O.
Riordan
,
Percolation
(
Cambridge University Press
,
2006
).
42.
R.
Cohen
and
S.
Havlin
,
Complex Networks: Structure, Robustness and Function
(
Cambridge University Press
,
2010
).
43.
B.
Drossel
and
F.
Schwabl
, “
Self-organized critical forest-fire model
,”
Phys. Rev. Lett.
69
(
11
),
1629
(
1992
).
44.
M. E.
Power
, “
Top-down and bottom-up forces in food webs: do plants have primacy
,”
Ecology
73
(
3
),
733
746
(
1992
).
45.
J. M.
Beggs
, “
Neuronal avalanche
,”
Scholarpedia
2
(
1
),
1344
(
2007
).
46.
L.
Abbott
and
T. B.
Kepler
, “
Model neurons: From Hodgkin-Huxley to hopfield
,” in
Statistical Mechanics of Neural Networks
(
Springer
,
1990
), pp.
5
18
.
You do not currently have access to this content.