Food webs—networks of predators and prey—have long been known to exhibit “intervality”: species can generally be ordered along a single axis in such a way that the prey of any given predator tend to lie on unbroken compact intervals. Although the meaning of this axis—usually identified with a “niche” dimension—has remained a mystery, it is assumed to lie at the basis of the highly non-trivial structure of food webs. With this in mind, most trophic network modelling has for decades been based on assigning species a niche value by hand. However, we argue here that intervality should not be considered the cause but rather a consequence of food-web structure. First, analysing a set of 46 empirical food webs, we find that they also exhibit predator intervality: the predators of any given species are as likely to be contiguous as the prey are, but in a different ordering. Furthermore, this property is not exclusive of trophic networks: several networks of genes, neurons, metabolites, cellular machines, airports, and words are found to be approximately as interval as food webs. We go on to show that a simple model of food-web assembly which does not make use of a niche axis can nevertheless generate significant intervality. Therefore, the niche dimension (in the sense used for food-web modelling) could in fact be the consequence of other, more fundamental structural traits. We conclude that a new approach to food-web modelling is required for a deeper understanding of ecosystem assembly, structure, and function, and propose that certain topological features thought to be specific of food webs are in fact common to many complex networks.

1.
C.
Darwin
,
On the Origin of Species
(
John Murray
,
London, UK
,
1859
).
2.
C. S.
Elton
,
Animal Ecology
(
Sidgwick and Jackson
,
London
,
1927
).
3.
J. E.
Cohen
and
C. M.
Newman
, “
A stochastic theory of community food webs I. Models and aggregated data
,”
Proc. R. Soc. London, Ser. B.
224
,
421
448
(
1985
).
4.
J. E.
Cohen
,
Food Webs and Niche Space
(
Princeton University Press
,
Princeton, NJ
,
1978
).
5.
S. L.
Pimm
,
The Balance of Nature? Ecological Issues in the Conservation of Species and Communities
(The University of Chicago Press
,
Chicago, IL
,
1991
).
6.
B.
Drossel
and
A. J.
McKane
, “
Modelling food webs
,” in
A Handbook of Graphs and Networks: From the Genome to the Internet
(
Wiley-VCH
,
Berlin
,
2003
).
7.
J. A.
Dunne
, “
The network structure of food webs
,” in
Ecological Networks: Linking Structure to Dynamics in Food Webs
, edited by
M.
Pascual
and
E. J. A.
Dunne
(
Oxford University Press
,
Oxford, UK
,
2006
).
8.
R. V.
Solé
and
J.
Bascompte
,
Self-Organization in Complex Ecosystems
(
Princeton University Press
,
Princeton, NJ
,
2006
).
9.
J.
Camacho
,
R.
Guimerá
, and
L. A. N.
Amaral
, “
Robust patterns in food web structure
,”
Phys. Rev. Lett.
88
,
228102
(
2002
).
10.
R. V.
Solé
and
M.
Montoya
, “
Complexity and fragility in ecological networks
,”
Proc. R. Soc. London B
268
,
2039204
(
2001
).
11.
J. M.
De Vos
,
L. N.
Joppa
,
J. L.
Gittleman
,
P. R.
Stephens
, and
S. L.
Pimm
, “
Estimating the normal background rate of species extinction
,”
Conserv. Biol.
29
,
452
462
(
2015
).
12.
J. E.
Cohen
, “
Food webs and the dimensionality of trophic niche space
,”
Proc. Natl. Acad. Sci. U. S. A.
74
,
4533
4563
(
1977
).
13.
J.
Grinnell
, “
The niche-relationships of the California Thrasher
,”
Auk
34
,
427
433
(
1917
).
14.
G. E.
Hutchinson
, “
Concluding remarks
,”
Cold Springs Harbor Symp. Quant. Biol.
22
,
415
427
(
1957
).
15.
R. J.
Williams
and
N. D.
Martinez
, “
Simple rules yield complex food webs
,”
Nature
404
,
180
183
(
2000
).
16.
R. J.
Williams
and
N. D.
Martinez
, “
Success and its limits among structural models of complex food webs
,”
J. Anim. Ecol.
77
,
512
519
(
2008
).
17.
C.
Guill
and
B.
Drossel
, “
Emergence of complexity in evolving niche-model food webs
,”
J. Theor. Biol.
251
,
108
120
(
2008
).
18.
D. B.
Stouffer
,
J.
Camacho
, and
L. A. N.
Amaral
, “
A robust measure of food web intervality
,”
Proc. Natl. Acad. Sci. U. S. A.
103
,
19015
19020
(
2006
).
19.
A. E.
Zook
,
A.
Eklöf
,
U.
Jacob
, and
S.
Allesina
, “
Food webs: Ordering species according to body size yields high degree of intervality
,”
J. Theor. Biol.
271
,
106
113
(
2011
).
20.
J.
Patricio
, “
Network analysis of trophic dynamics in South Florida ecosystems, fy 99: The graminoid ecosystem
,” Master's thesis (
University of Coimbra, Coimbra, Portugal
,
2000
).
21.
M. F.
Cattin
,
L. F.
Bersier
,
C.
Banasek-Richter
,
R.
Baltensperger
, and
J. P.
Gabriel
, “
Phylogenetic constraints and adaptation explain food-web structure
,”
Nature
427
,
835
839
(
2004
).
22.
M.
Girvan
and
M. E. J.
Newman
, “
Community structure in social and biological networks
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
7821
7826
(
2002
).
23.
S.
Johnson
,
V.
Domínguez-García
, and
M. A.
Muñoz
, “
Factors determining nestedness in complex networks
,”
PloS One
8
,
e74025
(
2013
).
24.
D. B.
Stouffer
,
J.
Camacho
,
R.
Guimerà
,
C. A.
Ng
, and
L. A. N.
Amaral
, “
Quantitative patterns in the structure of model and empirical food webs
,”
Ecology
86
,
1301
1311
(
2005
).
25.
S.
Allesina
,
D.
Alonso
, and
M.
Pascual
, “
A general model for food web structure
,”
Science
320
,
658
661
(
2008
).
26.
S.
Johnson
,
V.
Domínguez-García
,
L.
Donetti
, and
M. A.
Muñoz
, “
Trophic coherence determines food-web stability
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
17923
17928
(
2014
).
27.
A.-L.
Barabási
and
R.
Albert
, “
Emergence of scaling in random networks
,”
Science
286
,
509
512
(
1999
).
28.
S.
Levine
, “
Several measures of trophic structure applicable to complex food webs
,”
J. Theor. Biol.
83
,
195
207
(
1980
).
29.
V.
Domínguez-García
,
S.
Pigolotti
, and
M. A.
Muñoz
, “
Inherent directionality explains the lack of feedback loops in empirical networks
,”
Sci. Rep.
4
,
7497
(
2014
).
30.
S.
Johnson
and
N. S.
Jones
, “
Spectra and cycle structure of trophically coherent graphs
,” e-print arXiv:1505.07332.
31.
V.
Domínguez-García
and
M. A.
Muñoz
, “
Ranking species in mutualistic networks
,”
Sci. Rep.
5
,
8182
(
2015
).
32.
R. M.
May
, “
Will a large complex system be stable?”
Nature
238
,
413
(
1972
).
33.
K. S.
McCann
, “
The diversity-stability debate
,”
Nature
405
,
228
33
(
2000
).
34.
J.
Klaise
and
S.
Johnson
, “
From neurons to epidemics: How trophic coherence affects spreading processes
,” e-print arXiv:1603.00670.
35.
This is the model we use to generate coherent networks in this work; however, we note that Klaise and Johnson34 propose a slightly different version of the PPM, the main difference being that at high T their model limits in random graphs instead of acyclic cascade model networks.
36.
R. E.
Ulanowicz
and
D.
Baird
, “
Nutrient controls on ecosystem dynamics: the Chesapeake mesohaline community
,”
J. Mar. Syst.
19
,
159
172
(
1999
).
37.
L. G.
Abarca-Arenas
and
R. E.
Ulanowicz
, “
The effects of taxonomic aggregation on network analysis
,”
Ecol. Modell.
149
,
285
296
(
2002
).
38.
J.
Capitán
,
A.
Arenas
, and
R.
Guimerá
, “
Degree of intervality of food webs: From body-size data to models
,”
J. Theor. Biol.
334
,
35
44
(
2013
).
39.
A.
Eklöf
and
D. B.
Stouffer
, “
The phylogenetic component of food web structure and intervality
,”
Theor. Ecol.
9
,
107
115
(
2015
).
40.
D.
Mouillot
,
B.
Krasnov
, and
R.
Poulin
, “
High intervality explained by phylogenetic constraints in host-parasite webs
,”
Ecology
89
(
7
),
2043
2051
(
2008
).
41.
G. E.
Hutchinson
,
An Introduction to Population Biology
(
Yale University Press
,
New Haven, CT
,
1978
).
42.
R. K.
Colwell
and
T. F.
Rangel
, “
Hutchinson's duality: The once and future niche
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
19651
(
2009
).
43.
G.
McInerny
and
R.
Etienne
, “
Ditch the niche is the niche a useful concept in ecology or species distribution modelling?
J. Biogeogr.
39
,
2096
2102
(
2012
).
44.
G.
McInerny
and
R.
Etienne
, “
Pitch the niche taking responsibility for the concepts we use in ecology and species distribution modelling
,”
J. Biogeogr.
39
,
2112
2118
(
2012
).
45.
D. B.
Stouffer
,
E. L.
Rezende
, and
L. A. N.
Amaral
, “
The role of body mass in diet contiguity and food-web structure
,”
J. Anim. Ecol.
80
,
632
639
(
2011
).
46.
A. G.
Rossberg
,
A.
Brännström
, and
U.
Dieckmann
, “
Food-web structure in low- and high-dimensional trophic niche spaces
,”
J. R. Soc. Interface
7
,
1735
1743
(
2010
).
47.
B.
Corominas-Murtra
,
J.
Goñi
,
R. V.
Solé
, and
C.
Rodríguez-Caso
, “
On the origins of hierarchy in complex networks
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
13316
13321
(
2013
).
48.
N. G.
Jaarsma
,
S. M.
de Boer
,
C. R.
Townsend
,
R. M.
Thompson
, and
E. D.
Edwards
, “
Characterising foodwebs in two New Zealand streams
,”
N. Z. J. Mar. Freshwater Res.
32
,
271
286
(
1998
).
49.
R. M.
Thompson
and
C. R.
Townsend
, “
Energy availability, spatial heterogeneity and ecosystem size predict food-web structure in stream
,”
Oikos
108
,
137
148
(
2005
).
50.
R. M.
Thompson
,
E. D.
Edwards
,
A. R.
McIntosh
, and
C. R.
Townsend
, “
Allocation of effort in stream food-web studies: the best compromise?
Mar. Freshwater Res.
52
,
339
345
(
2001
).
51.
R. E.
Ulanowicz
,
C.
Bondavalli
, and
M.
Egnotovich
, “Spatial and temporal variation in the structure of a freshwater food web,” in Network Analysis of Trophic Dynamics in South Florida Ecosystem, FY 97: The Florida Bay Ecosystem (
1998
).
52.
J. G.
Field
,
R. J. M.
Crawford
,
P. A.
Wickens
,
C. L.
Moloney
,
K. L.
Cochrane
, and
C. A.
Villacastín-Herrero
, “
Network analysis of Benguela pelagic food webs
,” in
Benguela Ecology Programme, Workshop on Seal-Fishery Biological Interactions, BEP/SW91/M5a
, 16–20 September (University of Cape Town,
1991
).
53.
P.
Yodzis
, “
Local trophodynamics and the interaction of marine mammals and fisheries in the Benguela ecosystem
,”
J. Anim. Ecol.
67
,
635
658
(
1998
).
54.
K.
Havens
, “
Scale and structure in natural food webs
,”
Science
257
,
1107
1109
(
1992
).
55.
J.
Memmott
,
N. D.
Martinez
, and
J. E.
Cohen
, “
Predators, parasitoids and pathogens: species richness, trophic generality and body sizes in a natural food web
,”
J. Anim. Ecol.
69
,
1
15
(
2000
).
56.
C. R.
Townsend
,
R. M.
Thompson
,
A. R.
McIntosh
,
C.
Kilroy
,
E.
Edwards
, and
M. R.
Scarsbrook
, “
Disturbance, resource supply, and food-web architecture in streams
,”
Ecol. Lett.
1
,
200
209
(
1998
).
57.
J.
Bascompte
,
C.
Melián
, and
E.
Sala
, “
Interaction strength combinations and the overfishing of a marine food web
,”
Proc. Natl. Acad. Sci.
102
,
5443
5447
(
2005
).
58.
K. D.
Lafferty
,
R. F.
Hechinger
,
J. C.
Shaw
,
K. L.
Whitney
, and
A. M.
Kuris
, “
Food webs and parasites in a salt marsh ecosystem
,” in
Disease Ecology: Community Structure and Pathogen Dynamics
, edited by
S.
Collinge
and
C.
Ray
(
Oxford University Press
,
Oxford
,
2006
), pp.
119
134
.
59.
R. E.
Ulanowicz
, in
Growth and development: Ecosystems Phenomenology
, Network Analysis of Trophic Dynamics in South Florida Ecosystem, FY 97: The Florida Bay Ecosystem (
Springer
,
New York
,
1986
), pp
69
79
.
60.
R. B.
Waide
and
W. B.
Reagan
,
The Food Web of a Tropical Rainforest
(
University of Chicago Press
,
Chicago, IL
,
1996
).
61.
R. E.
Ulanowicz
,
J.
Heymans
, and
M.
Egnotovich
, “
Network analysis of trophic dynamics in South Florida ecosystems
,” in
Network Analysis of Trophic Dynamics in South Florida Ecosystems FY 99: The Graminoid Ecosystem
(
2000
).
62.
N. D.
Martinez
,
B. A.
Hawkins
,
H. A.
Dawah
, and
B. P.
Feifarek
, “
Effects of sampling effort on characterization of food-web structure
,”
Ecology
80
,
1044
1055
(
1999
).
63.
N. D.
Martinez
, “
Artifacts or attributes? Effects of resolution on the Little Rock Lake food web
,”
Ecol. Monogr.
61
,
367
392
(
1991
).
64.
J.
Riede
,
U.
Brose
,
B.
Ebenman
,
U.
Jacob
,
R.
Thompson
,
C.
Townsend
, and
T.
Jonsson
, “
Stepping in Elton's footprints: a general scaling model for body masses and trophic levels across ecosystems
,”
Ecol. Lett.
14
,
169
178
(
2011
).
65.
A.
Eklöf
,
U.
Jacob
,
J.
Kopp
,
J.
Bosch
,
R.
Castro-Urgal
,
B.
Dalsgaard
,
N.
Chacoff
,
C.
deSassi
,
M.
Galetti
,
P.
Guimaraes
,
S.
Lomáscolo
,
A.
Martín González
,
M.
Pizo
,
R.
Rader
,
A.
Rodrigo
,
J.
Tylianakis
,
D.
Vazquez
, and
S.
Allesina
, “
The dimensionality of ecological networks
,”
Ecol. Lett.
16
,
577
583
(
2013
).
66.
D.
Mason
, “
Quantifying the impact of exotic invertebrate invaders on food web structure and function in the great lakes: A network analysis approach
,”
Interim Progress Report to the Great Lakes Fisheries Commission-yr 1
(
2003
).
67.
M. E.
Monaco
and
R. E.
Ulanowicz
, “
Comparative ecosystem trophic structure of three U.S. Mid-Atlantic Estuaries
,”
Mar. Ecol. Prog. Ser.
161
,
239
254
(
1997
).
68.
S.
Opitz
, “
Trophic interactions in Caribbean coral reefs
,”
ICLARM Tech. Rep.
43
,
341
(
1996
).
69.
J.
Link
, “
Does food web theory work for marine ecosystems?”
Mar. Ecol. Prog. Ser.
230
,
1
9
(
2002
).
70.
P. H.
Warren
, “
Spatial and temporal variation in the structure of a freshwater food web
,”
Oikos
55
,
299
311
(
1989
).
71.
R. R.
Christian
and
J. J.
Luczkovich
, “
Organizing and understanding a winter's Seagrass foodweb network through effective trophic levels
,”
Ecol. Modell.
117
,
99
124
(
1999
).
72.
L.
Goldwasser
and
J. A.
Roughgarden
, “
Construction of a large Caribbean food web
,”
Ecology
74
,
1216
1233
(
1993
).
73.
U.
Jacob
,
A.
Thierry
,
U.
Brose
,
W.
Arntz
,
S.
Berg
,
T.
Brey
,
I.
Fetzer
,
T.
Jonsson
,
K.
Mintenbeck
,
C.
Mllmann
,
O.
Petchey
,
J.
Riede
, and
J.
Dunne
, “
The role of body size in complex food webs
,”
Adv. Ecol. Res.
45
,
181
223
(
2011
).
74.
S. J.
Hall
and
D.
Raffaelli
, “
Food-web patterns: lessons from a species-rich web
,”
J. Anim. Ecol.
60
,
823
842
(
1991
).
75.
J.
Duch
and
A.
Arenas
, “
Community identification using extremal optimization
,”
Phy. Rev. E
72
,
027104
(
2005
).
76.
J.
Sanz
,
J.
Navarro
,
A.
Arbués
,
C.
Martín
,
P. C.
Marijuán
, and
Y.
Moreno
, “
The transcriptional regulatory network of Mycobacterium tuberculosis
,”
PLoS One
6
,
e22178
(
2011
).
77.
H.
Yu
and
M.
Gerstein
,
Proc. Natl. Acad. Sci. U. S. A.
103
,
14724
14731
(
2006
).
78.
A.
Ma'ayan
,
G. A.
Cecchi
,
J.
Wagner
,
A. R.
Raob
,
R.
Iyengara
, and
G.
Stolovitzky
, “
Ordered cyclic motifs contribute to dynamic stability in biological and engineered networks
,”
PNAS
105
,
19235
19240
(
2008
).
79.
C.
Rodríguez-Caso
,
B.
Corominas-Murtra
, and
R. V.
Solé
, “
On the basic computational structure of gene regulatory networks
,”
Mol. BioSyst.
5
,
1617
1629
(
2009
).
80.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of small-world' networks
,”
Nature
393
,
440
442
(
1998
).
You do not currently have access to this content.