In this paper, we present a new view of the PageRank algorithm inspired by multiplex networks. This new approach allows to introduce a new centrality measure for classic complex networks and a new proposal to extend the usual PageRank algorithm to multiplex networks. We give some analytical relations between these new approaches and the classic PageRank centrality measure, and we illustrate the new parameters presented by computing them on real underground networks.

1.
S.
Boccaletti
,
G.
Bianconi
,
R.
Criado
,
C. I.
del Genio
,
J.
Gómez-Gardeñes
,
M.
Romance
,
I.
Sendiña-Nadal
,
Z.
Wang
, and
M.
Zanin
, “
The structure and dynamics of multilayer networks
,”
Phys. Rep.
544
(
1
),
1
122
(
2014
).
2.
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D. U.
Hwang
, “
Complex Networks: Structure and Dynamics
,”
Phys. Rep.
424
,
175
(
2006
).
3.
M.
Boguñá
,
R.
Pastor-Satorras
,
A.
Díaz-Guilera
, and
A.
Arenas
,
Phys. Rev. E
70
,
056122
(
2004
).
4.
R.
Bru
,
F.
Pedroche
, and
D. B.
Szyld
, “
Cálculo del vector PageRank de Google mediante el método aditivo de Schwarz (in Spanish)
,” in
Proceedings of Congreso de Métodos Numéricos en Ingeniería 2005
, edited by
J. L.
Pérez Paracio
, et al
(
SEMNI
,
2005
).
5.
R.
Criado
,
E.
García
,
F.
Pedroche
, and
M.
Romance
, “
A new method for comparing rankings through complex networks: Model and analysis of competitiveness of major European soccer leagues
,”
Chaos
23
,
043114
(
2013
).
6.
M.
De Domenico
,
A.
Solé-Ribalta
,
E.
Cozzo
,
M.
Kivela
,
Y.
Moreno
,
M. A.
Porter
,
S.
Gómez
, and
A.
Arenas
, “
Mathematical formulation of multi-layer networks
,”
Phys. Rev. X
3
,
041022
(
2013
).
7.
M.
De Domenico
,
A.
Solé-Ribalta
,
S.
Gómez
, and
A.
Arenas
, “
Navigability of interconnected networks under random failures
,”
PNAS
111
(
23
),
8351
8356
(
2013
).
8.
M.
De Domenico
,
A.
Solé-Ribalta
,
E.
Omodei
,
S.
Gómez
, and
A.
Arenas
, “
Ranking in interconnected multilayer networks reveals versatile nodes
,”
Nat. Commun.
6
,
6868
(
2015
).
9.
A.
Solé-Ribalta
,
M.
De Domenico
,
S.
Gómez
, and
A.
Arenas
, “
Random walk centrality in interconnected multilayer networks
,”
Physica D
323
,
73
79
(
2016
).
10.
S.
Derrible
, “
Network centrality of metro systems
,”
PLoS one
7
(
7
),
e40575
(
2012
).
11.
R.
Fagin
,
R.
Kumar
,
M.
Mahdian
,
D.
Sivakumar
, and
E.
Vee
, “
Comparing partial rankings
,”
SIAM J. Discrete Math.
20
(
3
),
628
648
(
2006
).
12.
S.
Fortunato
,
M.
Boguñá
,
A.
Flammini
, and
F.
Menczer
, “
Approximating PageRank from in-degree
,”
Lect. Not. Comput. Sci.
4936
,
59
71
(
2008
).
13.
E.
García
,
F.
Pedroche
, and
M.
Romance
, “
On the localization of the personalized PageRank of complex networks
,”
Linear Algebra Appl.
439
,
640
652
(
2013
).
14.
A.
Halu
,
R. J.
Mondragón
,
P.
Panzarasa
, and
G.
Bianconi
, “
Multiplex PageRank
,”
PLoS one
8
(
10
),
e78293
(
2013
).
15.
M.
Kivelä
,
A.
Arenas
,
M.
Barthelemy
,
J. P.
Gleeson
,
Y.
Moreno
, and
M. A.
Porter
, “
Multilayer networks
,”
J. Complex Networks
2
(
3
),
203
271
(
2014
).
16.
S. D.
Kamvar
,
T. H.
Haveliwala
, and
G. H.
Golub
, “
Adaptive methods for the computation of PageRank
,”
Linear Algebra Appl.
386
,
51
65
(
2004
).
17.
M. G.
Kendall
, “
A new measure of rank correlation
,”
Biometrika
30
(
1–2
),
81
89
(
1938
).
18.
See http://www.metromadrid.es/ for the official description of the structure of Madrid metro system.
19.
L.
Page
,
S.
Brin
,
R.
Motwani
, and
T.
Winograd
, “
The PageRank citation ranking: Bridging order to the Web
,”
Technical Report No. 66, Stanford University
,
1998
.
20.
F.
Pedroche
,
R.
Criado
,
E.
García
,
M.
Romance
, and
V. E.
Sánchez
, “
Comparing series of rankings with ties by using complex networks: An analysis of the Spanish stock market (IBEX-35 index)
,”
Networks Het. Media
10
(
1
),
101
125
(
2015
).
21.
M.
Romance
,
L.
Solá
,
J.
Flores
,
E.
García
,
A. J.
García del Amo
, and
R.
Criado
, “
A Perron-Frobenius theory for block matrices associated to a multiplex network
,”
Chaos, Solitons Fractals
72
,
77
89
(
2015
).
22.
L.
Solá
,
M.
Romance
,
R.
Criado
,
J.
Flores
,
A.
García del Amo
, and
S.
Boccaletti
, “
Eigenvector centrality of nodes in multiplex networks
,”
Chaos
23
,
033131
(
2013
).
23.
A.
Solé-Ribalta
,
M.
De Domenico
,
S.
Gómez
, and
A.
Arenas
, “
Centrality rankings in multiplex networks
,” in
Proceedings of the 2014 ACM Web Science Conference
(
2014
), pp.
149
155
.
24.
A. L.
Traud
,
E. D.
Kelsic
,
P. J.
Mucha
, and
M. A.
Porter
, “
Comparing community structure to characteristics in online collegiate social networks
,”
SIAM Rev.
53
(
3
),
526
543
(
2011
).
25.
R. S.
Varga
,
Matrix Iterative Analysis
, 2nd ed. (
Springer
,
Berlin
,
2000
).
26.
S.
Wasserman
and
K.
Faust
,
Social Networks Analysis
(
Cambridge University Press
,
London
,
1994
).
You do not currently have access to this content.