Only using one-stage op-amp based negative impedance converter realization, a simplified Chua's diode with positive outer segment slope is introduced, based on which an improved Chua's circuit realization with more simpler circuit structure is designed. The improved Chua's circuit has identical mathematical model but completely different nonlinearity to the classical Chua's circuit, from which multiple attractors including coexisting point attractors, limit cycle, double-scroll chaotic attractor, or coexisting chaotic spiral attractors are numerically simulated and experimentally captured. Furthermore, with dimensionless Chua's equations, the dynamical properties of the Chua's system are studied including equilibrium and stability, phase portrait, bifurcation diagram, Lyapunov exponent spectrum, and attraction basin. The results indicate that the system has two symmetric stable nonzero node-foci in global adjusting parameter regions and exhibits the unusual and striking dynamical behavior of multiple attractors with multistability.

1.
L.
Fortuna
,
M.
Frasca
, and
M. G.
Xibilia
,
Chua's Circuit Implementations: Yesterday, Today and Tomorrow
(
World Scientific
,
Singapore
,
2009
), p.
1
10
.
2.
M. P.
Kennedy
, “
Robust op amp realization of Chua's circuit
,”
Frequenz
46
(
3–4
),
66
80
(
1992
).
3.
T.
Matsumoto
, “
A chaotic attractor from Chua's circuit
,”
IEEE Trans. Circuits Syst.
CAS-31
(
12
),
1055
1058
(
1984
).
4.
T.
Matsumoto
,
L. O.
Chua
, and
K.
Tokumasu
, “
Double scroll via a two-transistor circuit
,”
IEEE Trans. Circuits Syst.
CAS-33
(
8
),
828
835
(
1986
).
5.
A. S.
Elwakil
and
M. P.
Kennedy
, “
Improved implementation of Chua's chaotic oscillator using current feedback op amp
,”
IEEE Trans. Circuits Syst. I
47
(
1
),
76
79
(
2000
).
6.
P.
Arena
,
S.
Baglio
,
L.
Fortuna
, and
G.
Manganaro
, “
Chua's circuit can be generated by CNN cells
,”
IEEE Trans. Circuits Syst. I
42
(
2
),
123
125
(
1995
).
7.
Q. G.
Yang
and
G. R.
Chen
, “
A chaotic system with one saddle and two stable node-foci
,”
Int. J. Bifurcation Chaos
18
(
5
),
1393
1414
(
2008
).
8.
G. A.
Leonov
and
N. V.
Kuznetsov
, “
Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits
,”
Int. J. Bifurcation Chaos
23
(
1
),
1330002
(
2013
).
9.
G. A.
Leonov
,
N. V.
Kuznetsov
, and
V. I.
Vagaitsev
, “
Localization of hidden Chua's attractors
,”
Phys. Lett. A
375
(
23
),
2230
2233
(
2011
).
10.
G. A.
Leonov
and
N. V.
Kuznetsov
, “
On differences and similarities in the analysis of Lorenz, Chen and Lü systems
,”
Appl. Math. Comput.
256
,
334
343
(
2015
).
11.
G. A.
Leonov
,
N. V.
Kuznetsov
, and
T. N.
Mokaev
, “
Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity
,”
Commun. Nonlinear Sci. Numer. Simul.
28
(
1–3
),
166
174
(
2015
).
12.
G. A.
Leonov
,
N. V.
Kuznetsov
, and
T. N.
Mokaev
, “
Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion
,”
Eur. Phys. J.: Spec. Top.
224
(
8
),
1421
1458
(
2015
).
13.
I.
Stewart
, “
The Lorenz attractor exists
,”
Nature
406
,
948
949
(
2000
).
14.
G. R.
Chen
and
T.
Ueta
, “
Yet another chaotic attractor
,”
Int. J. Bifurcation Chaos
9
(
7
),
1465
1466
(
1999
).
15.
L.
Minati
, “
Experimental dynamical characterization of five autonomous chaotic oscillators with tunable series resistance
,”
Chaos
24
(
3
),
033110
(
2014
).
16.
A. S.
Elwakil
,
S.
Özoğuz
, and
M. P.
Kennedy
, “
Creation of a complex butterfly attractor using a novel Lorenz-type system
,”
IEEE Trans. Circuits Syst. I
49
(
4
),
527
530
(
2002
).
17.
S. M.
Yu
,
J. H.
,
X. H.
Yu
, and
G. R.
Chen
, “
Design and implementation of grid multiwing hyperchaotic Lorenz system family via switching control and constructing super-heteroclinic loops
,”
IEEE Trans. Circuits Syst. I
59
(
5
),
1015
1028
(
2012
).
18.
S. M.
Yu
,
J. H.
,
W. K. S.
Tang
, and
G. R.
Chen
, “
A general multiscroll Lorenz system family and its realization via digital signal processors
,”
Chaos
16
(
3
),
268
279
(
2006
).
19.
J. C.
Sprott
,
S.
Jafari
,
V. T.
Pham
, and
Z. S.
Hosseini
, “
A chaotic system with a single unstable node
,”
Phys. Lett. A
379
(
36
),
2030
2036
(
2015
).
20.
C. B.
Li
and
J. C.
Sprott
, “
Coexisting hidden attractors in a 4-D simplified Lorenz system
,”
Int. J. Bifurcation Chaos
24
(
3
),
1450034
(
2014
).
21.
P. R.
Sharma
,
M. D.
Shrimali
,
A.
Prasad
,
G. A.
Leonov
, and
N. V.
Kuznetsov
, “
Controlling dynamics of hidden attractors
,”
Int. J. Bifurcation Chaos
25
(
4
),
1550061
(
2015
).
22.
S.
Jafari
and
J. C.
Sprott
, “
Simple chaotic flows with a line equilibrium
,”
Chaos, Solitons Fractals
57
,
79
84
(
2013
).
23.
S.
Jafari
,
J. C.
Sprott
, and
S. M. R. H.
Golpayegani
, “
Elementary quadratic chaotic flows with no equilibria
,”
Phys. Lett. A
377
(
9
),
699
702
(
2013
).
24.
M.
Shahzad
,
V. T.
Pham
,
M. A.
Ahmad
,
S.
Jafari
, and
F.
Hadaeghi
, “
Synchronization and circuit design of a chaotic system with coexisting hidden attractors
,”
Eur. Phys. J.: Spec. Top.
224
(
8
),
1637
1652
(
2015
).
25.
C. B.
Li
,
J. C.
Sprott
,
W.
Thio
, and
H. Q.
Zhu
, “
A new piecewise linear hyperchaotic circuit
,”
IEEE Trans. Circuits Syst. II
61
(
12
),
977
981
(
2014
).
26.
U.
Chuadhuri
and
A.
Prasad
, “
Complicated basins and the phenomenon of amplitude death in coupled hidden attractors
,”
Phys. Lett. A
378
(
9
),
713
718
(
2014
).
27.
M.
Molaie
and
S.
Jafari
, “
Simple chaotic flows with one stable equilibrium
,”
Int. J. Bifurcation Chaos
23
(
11
),
1350188
(
2013
).
28.
Q. D.
Li
,
H. Z.
Zeng
, and
X. S.
Yang
, “
On hidden twin attractors and bifurcation in the Chua's circuit
,”
Nonlinear Dyn.
77
(
1–2
),
255
266
(
2014
).
29.
B. C.
Bao
,
F. W.
Hu
,
M.
Chen
,
Q.
Xu
, and
Y. J.
Yu
, “
Self-excited and hidden attractors found simultaneously in a modified Chua's circuit
,”
Int. J. Bifurcation Chaos
25
(
5
),
1550075
(
2015
).
30.
M.
Chen
,
J. J.
Yu
, and
B. C.
Bao
, “
Finding hidden attractors in an improved memristor based Chua's circuit
,”
Electron. Lett.
51
(
6
),
462
464
(
2015
).
31.
M.
Chen
,
M. Y.
Li
,
Q.
Yu
,
B. C.
Bao
,
Q.
Xu
, and
J.
Wang
, “
Dynamics of self-excited attractors and hidden attractors in generalized memristor based Chua's circuit
,”
Nonlinear Dyn.
81
(
1–2
),
215
226
(
2015
).
32.
N. V.
Kuznetsov
,
O. A.
Kuznetsova
,
G. A.
Leonov
, and
V. I.
Vagaitsev
,
Analytical-numerical localization of hidden attractor in electrical Chua's circuit
, Lecture Notes in Electrical Engineering Vol. 174 (
Springer
,
Berlin Heidelberg
,
2013
), pp.
149
158
.
33.
G. A.
Leonov
,
N. V.
Kuznetsov
, and
V. I.
Vagaitsev
, “
Hidden attractor in smooth Chua systems
,”
Phys. D
241
(
18
),
1482
1486
(
2012
).
34.
M. S.
Patel
,
U.
Patel
,
A.
Sen
,
G. C.
Sethia
,
C.
Hens
, and
S. K.
Dana
, “
Experimental observation of extreme multistability in an electronic system of two coupled Rössler oscillators
,”
Phys. Rev. E
89
(
2
),
359
385
(
2014
).
35.
J. C.
Sprott
,
X.
Wang
, and
G. R.
Chen
, “
Coexistence of point, periodic and strange attractors
,”
Int. J. Bifurcation Chaos
23
(
5
),
1350093
(
2013
).
36.
C.
Hens
,
S. K.
Dana
, and
U.
Feudel
, “
Extreme multistability: Attractors manipulation and robustness
,”
Chaos
25
,
053112
(
2015
).
37.
S.
Morfu
,
B.
Nofiele
, and
P.
Marquié
, “
On the use of multistability for image processing
,”
Phys. Lett. A
367
(
3
),
192
198
(
2007
).
38.
J.
Kengne
,
Z. N.
Tabekoueng
,
V. K.
Tamba
, and
A. N.
Negou
, “
Periodicity, chaos, and multiple attractors in a memristor-based Shinriki's circuit
,”
Chaos
25
(
10
),
103126
(
2015
).
39.
A. N.
Pisarchik
and
U.
Feudel
, “
Control of multistability
,”
Phys. Rep.
540
(
4
),
167
218
(
2014
).
40.
C. B.
Li
and
J. C.
Sprott
, “
Multistability in the Lorenz system: A broken butterfly
,”
Int. J. Bifurcation Chaos
24
(
10
),
1450131
(
2014
).
41.
B. C.
Bao
,
P.
Jiang
,
Q.
Xu
, and
M.
Chen
, “
Hidden attractors in a practical Chua's circuit based on a modified Chua's diode
,”
Electron. Lett.
52
,
23
25
(
2016
).
42.
J.
Kengne
, “
Coexistence of chaos with hyperchaos, period-3 doubling bifurcation, and transient chaos in the hyperchaotic oscillator with gyrators
,”
Int. J. Bifurcation Chaos
25
(
4
),
1550052
(
2015
).
43.
I.
Makoto
, “
Synthesis of electronic circuits for simulating nonlinear dynamics
,”
Int. J. Bifurcation Chaos
11
(
3
),
605
653
(
2001
).
44.
A.
Wolf
,
J. B.
Swift
,
H. L.
Swinney
, and
J. A.
Vastano
, “
Determining Lyapunov exponents from a time series
,”
Phys. D
16
(
3
),
285
317
(
1985
).
45.
B. C.
Bao
,
P.
Jiang
,
H. G.
Wu
, and
F. W.
Hu
, “
Complex transient dynamics in periodically forced memristive Chua's circuit
,”
Nonlinear Dyn.
79
(
4
),
2333
2343
(
2015
).
46.
X.
Ni
and
Y. C.
Lai
, “
Transient chaos in optical metamaterials
,”
Chaos
21
(
3
),
033116
(
2011
).
47.
A. I.
Ahamed
and
M.
Lakshmanan
, “
Nonsmooth bifurcations, transient hyperchaos and hyperchaotic beats in a memristive Murali-Lakshmanan-Chua circuit
,”
Int. J. Bifurcation Chaos
23
(
6
),
1350098
(
2013
).
48.
G.
Pegna
,
R.
Marrocu
,
R.
Tonelli
,
F.
Meloni
, and
G.
Santoboni
, “
Experimental definition of the basin of attraction for Chua's circuit
,”
Int. J. Bifurcation Chaos
10
(
5
),
959
970
(
2000
).
You do not currently have access to this content.