We have studied the effects of perturbations on the cat's cerebral cortex. According to the literature, this cortex structure can be described by a clustered network. This way, we construct a clustered network with the same number of areas as in the cat matrix, where each area is described as a sub-network with a small-world property. We focus on the suppression of neuronal phase synchronisation considering different kinds of perturbations. Among the various controlling interventions, we choose three methods: delayed feedback control, external time-periodic driving, and activation of selected neurons. We simulate these interventions to provide a procedure to suppress undesired and pathological abnormal rhythms that can be associated with many forms of synchronisation. In our simulations, we have verified that the efficiency of synchronisation suppression by delayed feedback control is higher than external time-periodic driving and activation of selected neurons of the cat's cerebral cortex with the same coupling strengths.
Skip Nav Destination
Suppression of phase synchronisation in network based on cat's brain
,
,
,
,
,
,
,
Article navigation
April 2016
Research Article|
April 19 2016
Suppression of phase synchronisation in network based on cat's brain
Available to Purchase
Ewandson L. Lameu;
Ewandson L. Lameu
1Pós-Graduação em Ciências,
Universidade Estadual de Ponta Grossa
, Ponta Grossa, Paraná, Brazil
Search for other works by this author on:
Fernando S. Borges;
Fernando S. Borges
1Pós-Graduação em Ciências,
Universidade Estadual de Ponta Grossa
, Ponta Grossa, Paraná, Brazil
Search for other works by this author on:
Rafael R. Borges;
Rafael R. Borges
1Pós-Graduação em Ciências,
Universidade Estadual de Ponta Grossa
, Ponta Grossa, Paraná, Brazil
Search for other works by this author on:
Kelly C. Iarosz;
Kelly C. Iarosz
2Instituto de Física,
Universidade de São Paulo
, São Paulo, São Paulo, Brazil
Search for other works by this author on:
Iberê L. Caldas;
Iberê L. Caldas
2Instituto de Física,
Universidade de São Paulo
, São Paulo, São Paulo, Brazil
Search for other works by this author on:
Antonio M. Batista;
Antonio M. Batista
a)
3Departamento de Matemática e Estatística,
Universidade Estadual de Ponta Grossa
, Ponta Grossa, Paraná, Brazil
Search for other works by this author on:
Ricardo L. Viana;
Ricardo L. Viana
4Departamento de Física,
Universidade Federal do Paraná
, Curitiba, Paraná, Brazil
Search for other works by this author on:
Jürgen Kurths
Jürgen Kurths
5Department of Physics,
Humboldt University
, Berlin, Germany; Institute for Complex Systems and Mathematical Biology
, Aberdeen, Scotland; and Potsdam Institute for Climate Impact Research
, Potsdam, Germany
Search for other works by this author on:
Ewandson L. Lameu
1
Fernando S. Borges
1
Rafael R. Borges
1
Kelly C. Iarosz
2
Iberê L. Caldas
2
Antonio M. Batista
3,a)
Ricardo L. Viana
4
Jürgen Kurths
5
1Pós-Graduação em Ciências,
Universidade Estadual de Ponta Grossa
, Ponta Grossa, Paraná, Brazil
2Instituto de Física,
Universidade de São Paulo
, São Paulo, São Paulo, Brazil
3Departamento de Matemática e Estatística,
Universidade Estadual de Ponta Grossa
, Ponta Grossa, Paraná, Brazil
4Departamento de Física,
Universidade Federal do Paraná
, Curitiba, Paraná, Brazil
5Department of Physics,
Humboldt University
, Berlin, Germany; Institute for Complex Systems and Mathematical Biology
, Aberdeen, Scotland; and Potsdam Institute for Climate Impact Research
, Potsdam, Germany
a)
Electronic mail: [email protected]
Chaos 26, 043107 (2016)
Article history
Received:
February 12 2016
Accepted:
March 29 2016
Citation
Ewandson L. Lameu, Fernando S. Borges, Rafael R. Borges, Kelly C. Iarosz, Iberê L. Caldas, Antonio M. Batista, Ricardo L. Viana, Jürgen Kurths; Suppression of phase synchronisation in network based on cat's brain. Chaos 1 April 2016; 26 (4): 043107. https://doi.org/10.1063/1.4945796
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Discovery of interpretable structural model errors by combining Bayesian sparse regression and data assimilation: A chaotic Kuramoto–Sivashinsky test case
Rambod Mojgani, Ashesh Chattopadhyay, et al.
Enhancing reservoir predictions of chaotic time series by incorporating delayed values of input and reservoir variables
Luk Fleddermann, Sebastian Herzog, et al.
Recent achievements in nonlinear dynamics, synchronization, and networks
Dibakar Ghosh, Norbert Marwan, et al.
Related Content
Synchrony suppression in ensembles of coupled oscillators via adaptive vanishing feedback
Chaos (August 2013)
Delay-induced intermittent transition of synchronization in neuronal networks with hybrid synapses
Chaos (March 2011)
Dynamic changes in network synchrony reveal resting-state functional networks
Chaos (February 2015)