In this article, we develop some approaches, which enable us to more accurately and analytically identify the essential patterns that guarantee the almost sure stability of discrete-time systems with random switches. We allow for the case that the elements in the switching connection matrix even obey some unbounded and continuous-valued distributions. In addition to the almost sure stability, we further investigate the almost sure synchronization in complex dynamical networks consisting of randomly connected nodes. Numerical examples illustrate that a chaotic dynamics in the synchronization manifold is preserved when statistical parameters enter some almost sure synchronization region established by the developed approach. Moreover, some delicate configurations are considered on probability space for ensuring synchronization in networks whose nodes are described by nonlinear maps. Both theoretical and numerical results on synchronization are presented by setting only a few random connections in each switch duration. More interestingly, we analytically find it possible to achieve almost sure synchronization in the randomly switching complex networks even with very large population sizes, which cannot be easily realized in non-switching but deterministically connected networks.

1.
R. M.
May
, “
Will a large complex system be stable
,”
Nature
238
,
413
414
(
1972
).
2.
B.
Ibarz
,
J. M.
Casado
, and
M. A. F.
Sanjuán
, “
Map-based models in neuronal dynamics
,”
Phys. Rep.
501
(
1
),
1
74
(
2011
).
3.
J. H.
Miller
and
S. E.
Page
,
Complex Adaptive Systems: An Introduction to Computational Models of Social Life
(
Princeton University Press
,
2007
).
4.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
2003
).
5.
W.
Lin
and
G.
Chen
, “
Using white noise to enhance synchronization of coupled chaotic systems
,”
Chaos
16
,
013134
(
2006
).
6.
Y.
Sun
and
W.
Lin
, “
A positive role of multiplicative noise on the emergence of flocking in a stochastic Cucker-Smale system
,”
Chaos
25
,
083118
(
2015
).
7.
M.
Porfiri
and
M.
Bernardo
, “
Criteria for global pinning-controllability of complex networks
,”
Automatica
44
,
3100
3106
(
2008
).
8.
F.
Sorrentino
, “
Synchronization of hypernetworks of coupled dynamical systems
,”
New J. Phys.
14
,
033035
(
2012
).
9.
E.
Thebault
and
C.
Fontaine
, “
Stability of ecological communities and the architecture of mutualistic and trophic networks
,”
Science
329
(
5993
),
853
856
(
2010
).
10.
R. M.
May
,
Stability and Complexity in Model Ecosystems
(
Princeton University Press
,
2001
).
11.
T.
Alpcan
and
T.
Başar
, “
A stability result for switched systems with multiple equilibria
,”
J. Dyn. Contin., Discrete Impulsive Syst., Ser. A: Math. Anal.
17
,
949
958
(
2010
); available at http://online.watsci.org/fulltext_a_pdf/2010v17/v17n6a-pdf/949-958switched-journal.pdf.
12.
C.
Li
,
M. Z. Q.
Chen
,
J.
Lam
, and
X.
Mao
, “
On exponential almost sure stability of random jump systems
,”
IEEE Trans. Autom. Control
57
(
12
),
3064
3077
(
2012
).
13.
H.
Lin
and
P. J.
Antsaklis
, “
Stability and stabilizability of switched linear systems a survey of recent results
,”
IEEE Trans. Autom. Control
54
(
2
),
308
322
(
2009
).
14.
Z.
Sun
and
S. S.
Ge
,
Stability Theory of Switched Dynamical Systems
(
Springer
,
New York
,
2011
).
15.
J.
Zhao
,
D. J.
Hill
, and
T.
Liu
, “
Synchronization of complex dynamical networks with switching topology: A switched system point of view
,”
Automatica
45
(
11
),
2502
2511
(
2009
).
16.
R.
Bellman
,
J.
Bentsman
, and
S. M.
Meerkov
, “
Stability of fast periodic systems
,”
IEEE Trans. Autom. Control
30
(
3
),
289
291
(
1985
).
17.
D. J.
Stilwell
,
E. M.
Bollt
, and
D. G.
Roberson
, “
Sufficient conditions for fast switching synchronization in time-varying network topologies
,”
SIAM J. Appl. Dyn. Syst.
5
(
1
),
140
156
(
2006
).
18.
W.
Wang
and
D.
Nešić
, “
Input–to-state stability and averaging of linear fast switching systems
,”
IEEE Trans. Autom. Control
55
(
5
),
1274
(
2010
).
19.
Y.
Wang
,
M.
Yang
,
H.-O.
Wang
, and
Z.
Guan
, “
Robust stabilization of complex switched networks with parametric uncertainties and delays via impulsive control
,”
IEEE Trans. Circuits Syst., I
56
(
9
),
11
15
(
2009
).
20.
M. R.
Jeffrey
, “
Nondeterminism in the limit of nonsmooth dynamics
,”
Phys. Rev. Lett.
106
,
254103
(
2011
).
21.
M. R.
Jeffrey
,
A. R.
Champneys
,
M.
Bernardo
, and
S. W.
Shaw
, “
Catastrophic sliding bifurcations and onset of oscillations in a superconducting resonator
,”
Phys. Rev. E
81
,
016213
(
2010
).
22.
L.
Zhou
,
D. W. C.
Ho
, and
G.
Zhai
, “
Stability analysis of switched linear singular systems
,”
Automatica
49
,
1481
1487
(
2013
).
23.
I. V.
Belykh
,
V. N.
Belykh
, and
M.
Hasler
, “
Blinking model and synchronization in small-world networks with a time-varying coupling
,”
Physica D
195
,
188
206
(
2004
).
24.
V. N.
Belykh
,
I. V.
Belykh
, and
M.
Hasler
, “
Connection graph stability method for synchronized coupled chaotic systems
,”
Physica D
195
,
159
187
(
2004
).
25.
M.
Hasler
,
V. N.
Belykh
, and
I. V.
Belykh
, “
Dynamics of stochastically blinking systems. Part II: Asymptotic properties
,”
SIAM J. Appl. Dyn. Syst.
12
(
2
),
1031
1084
(
2013
).
26.
M.
Porfiri
,
D. J.
Stilwell
, and
E. M.
Bollt
, “
Synchronization in random weighted directed networks
,”
IEEE Trans. Circuits Syst.
55
(
10
),
3170
3177
(
2008
).
27.
Y.
Guo
,
W.
Lin
, and
M. A. F.
Sanjuán
, “
The efficiency of a random and fast switch in complex dynamical systems
,”
New J. Phys.
14
,
083022
(
2012
).
28.
C.
Robinson
,
Dynamical Systems: Stability, Symbolic Dynamics, and Chaos
(
CRC Press
,
Boca Raton, FL
,
1998
).
29.
N.
Abaid
and
M.
Porfiri
, “
Consensus over numerosity-constrained random networks
,”
IEEE Trans. Autom. Control
56
(
3
),
649
654
(
2011
).
30.
D. B.
Kinston
and
R. R. W.
Beard
, “
Discrete-time average-consensus under switching network topologies
,” in
American Control Conference
, June
2006
.
31.
S. S.
Pereira
and
A.
Pagés-Zamora
, “
Mean square convergence of consensus algorithms in random WSNs
,”
IEEE Trans. Signal Process.
58
(
5
),
2866
2874
(
2010
).
32.
M.
Porfiri
,
D. J.
Stilwell
,
E. M.
Bollt
, and
J. D.
Skufca
, “
Random talk: Random walk and synchronizability in a moving neighborhood network
,”
Physica D
224
,
102
113
(
2006
).
33.
M.
Porfiri
, “
A master stability function for stochastically coupled chaotic maps
,”
EPL
96
,
40014
(
2011
).
34.
A.
Tahbaz-Salehi
and
A.
Jadbabaie
, “
A necessary and sufficient condition for consensus over random networks
,”
IEEE Trans. Autom. Control
53
(
3
),
791
795
(
2008
).
35.
G.
Zhai
,
X.
Xu
, and
D. W. C.
Ho
, “
Stability of switched linear discrete-time descriptor systems a new commutation condition
,”
Int. J. Control
85
(
11
),
1779
1788
(
2012
).
36.
J.
Zhou
and
Q.
Wang
, “
Convergence speed in distributed consensus over dynamically switching random networks
,”
Automatica
45
,
1455
1461
(
2009
).
37.
M.
Zhu
and
S.
Martinez
, “
Discrete-time dynamic average consensus
,”
Automatica
46
,
322
329
(
2010
).
38.
M.
Park
,
O.
Kwon
,
J.
Park
, and
S.
Lee
, “
Synchronization stability of delayed discrete-time complex dynamical networks with randomly changing coupling strength
,”
Adv. Differ. Equations
2012
,
208
.
39.
Z.
Wang
,
Y.
Wang
, and
Y.
Liu
, “
Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time delays
,”
IEEE Trans. Neural Networks
21
(
1
),
11
25
(
2010
).
40.
G. R.
Grimmett
and
D. R.
Stirzaker
,
Probability and Random Processes
(
Oxford University Press
,
Oxford, UK
,
2001
).
41.
A. N.
Shiryaev
,
Probability
(
Springer-Verlag
,
Berlin, Heidelberg
,
1989
).
42.
H. L.
Royden
,
Real Analysis
(
Prentice Hall
,
1988
).
43.
G.
Bennett
, “
Probability inequalities for the sum of independent random variables
,”
J. Am. Stat. Assoc.
57
(
297
),
33
45
(
1962
).
44.
W.
Lin
and
H.
Ma
, “
Synchronization between adaptively coupled systems with discrete and distributed time-delays
,”
IEEE Trans. Autom. Control
55
,
819
829
(
2010
).
45.
W.
Yu
,
G.
Chen
, and
J.
, “
On pinning synchronization of complex dynamical networks
,”
Automatica
45
,
429
435
(
2009
).
46.
E. M.
Izhikevich
,
Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting
(
MIT Press
,
Cambridge
,
2007
).
47.
W.
Ren
and
R. R. W.
Beard
, “
Consensus seeking in multiagent systems under dynamically changing interaction topologies
,”
IEEE Trans. Autom. Control
50
(
5
),
655
661
(
2005
).
48.
M.
Porfiri
and
D. J.
Stilwell
, “
Consensus seeking over random weighted directed graphs
,”
IEEE Trans. Autom. Control
52
(
9
),
1767
1773
(
2007
).
49.
A. W. M.
Dress
and
W.
Lin
, “
Dynamics of a discrete-time model of an “ideal-storage” system describing hetero-catalytic processes on metal surfaces
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
21
,
1331
1339
(
2011
).
50.
A.
Englert
,
S.
Heiligenthal
,
W.
Kinzel
, and
I.
Kanter
, “
Synchronization of chaotic networks with time-delayed couplings: An analytic study
,”
Phys. Rev. E
83
,
046222
(
2011
).
51.
T.
Tel
and
Y.-C.
Lai
, “
Chaotic transients in spatially extended systems
,”
Phys. Rep.
460
,
245
275
(
2008
).
52.

In application of model (18), it is unnecessary to define the diagonal elements of the connection matrix since they do not appear in the modeling. Here, for properly performing the following theoretical augment, the definition is therefore introduced.

53.

The non-negativeness assumption on the elements of the coupling matrix could be relaxed to some extent. In fact, the convexness or the invariance shown in (20) is necessary for the argument.

54.
B.
Øksendal
,
Stochastic Differential Equations: An Introduction with Applications
(
Springer
,
Berlin
,
1998
).
55.

Here, we do not decompose the expectation directly with the set Ω0 but with a larger set AiAvΩ0. Actually, it is this kind of estimation that results in a more accurate criterion for ensuring almost sure synchronization in a large-scale network in the following discussion.

56.
D.
MacKay
,
Information Theory, Inference, and Learning Algorithms
(
Cambridge University Press
,
Cambridge
,
2003
).
57.
C. E.
Shannon
and
W.
Weaver
,
The Mathematical Theory of Communication
(
The University of Illinois Press
,
Urbana, Illinois
,
1949
).
You do not currently have access to this content.