This paper focuses on the study of the stochastic Van der Pol vibro-impact system with fractional derivative damping under Gaussian white noise excitation. The equations of the original system are simplified by non-smooth transformation. For the simplified equation, the stochastic averaging approach is applied to solve it. Then, the fractional derivative damping term is facilitated by a numerical scheme, therewith the fourth-order Runge-Kutta method is used to obtain the numerical results. And the numerical simulation results fit the analytical solutions. Therefore, the proposed analytical means to study this system are proved to be feasible. In this context, the effects on the response stationary probability density functions (PDFs) caused by noise excitation, restitution condition, and fractional derivative damping are considered, in addition the stochastic P-bifurcation is also explored in this paper through varying the value of the coefficient of fractional derivative damping and the restitution coefficient. These system parameters not only influence the response PDFs of this system but also can cause the stochastic P-bifurcation.

1.
B.
Brogliato
,
Nonsmooth Mechanics: Models, Dynamics and Control
(
Springer Science & Business Media
,
2012
).
2.
J. O.
Aidanpää
,
H. H.
Shen
, and
R. B.
Gupta
,
Chaos
4
(
4
),
621
630
(
1994
).
3.
A. B.
Nordmark
,
J. Sound Vib.
145
(
2
),
279
297
(
1991
).
4.
J.
Xie
and
W.
Ding
,
Int. J. Non-Linear Mech.
40
(
4
),
531
543
(
2005
).
5.
R. L.
Stratonovich
,
Topics in the Theory of Random Noise
(
CRC Press
,
1967
).
6.
V. F.
Zhuravlev
,
Mech. Solids
11
(
2
),
23
27
(
1976
).
7.
Q.
Feng
and
H.
He
,
Eur. J. Mech., A: Solids
22
(
2
),
267
281
(
2003
).
8.
Z.
Huang
,
Z.
Liu
, and
W.
Zhu
,
J. Sound Vib.
275
(
1
),
223
240
(
2004
).
9.
N. S.
Namachchivaya
and
J. H.
Park
,
J. Appl. Mech.
72
(
6
),
862
870
(
2005
).
10.
C.
Li
,
W.
Xu
,
J.
Feng
, and
L.
Wang
,
Physica A
392
(
6
),
1269
1279
(
2013
).
11.
H.
Rong
,
X.
Wang
,
W.
Xu
, and
T.
Fang
,
J. Sound Vib.
327
(
1
),
173
182
(
2009
).
12.
D.
Iourtchenko
and
M.
Dimentberg
,
J. Sound Vib.
248
(
5
),
913
923
(
2001
).
13.
H.
Zhu
,
J. Sound Vib.
333
(
3
),
954
961
(
2014
).
14.
A.
Gemant
,
London, Edinburgh, Dublin Philos. Mag. J. Sci.
25
(
168
),
540
549
(
1938
).
15.
R. L.
Bagley
and
P. J.
Tovik
,
J. Rheol.
27
(
3
),
201
210
(
1983
).
16.
F.
Mainardi
,
Chaos, Solitons Fractals
7
(
9
),
1461
1477
(
1996
).
17.
A. I.
Saichev
and
G. M.
Zaslavsky
,
Chaos
7
(
4
),
753
764
(
1997
).
18.
Y.
Kun
,
L.
Li
, and
T.
Jiaxiang
,
Earthquake Eng. Eng. Vib.
2
(
1
),
133
139
(
2003
).
19.
D.
Liu
,
J.
Li
, and
Y.
Xu
,
Commun. Nonlinear Sci. Numer. Simul.
19
(
10
),
3642
3652
(
2014
).
20.
A.
Leung
,
H.
Yang
,
P.
Zhu
, and
Z.
Guo
,
Comput. Struct.
121
,
10
21
(
2013
).
21.
L.
Chen
,
W.
Wang
,
Z.
Li
, and
W.
Zhu
,
Int. J. Non-Linear Mech.
48
,
44
50
(
2013
).
22.
J.
Deng
,
W.-C.
Xie
, and
M. D.
Pandey
,
J. Sound Vib.
333
(
6
),
1629
1643
(
2014
).
23.
W.
Zhu
and
G.
Cai
,
Int. J. Non-Linear Mech.
46
(
5
),
720
726
(
2011
).
24.
K.
Diethelm
,
N. J.
Ford
, and
A. D.
Freed
,
Nonlinear Dyn.
29
(
1–4),
3
22
(
2002
).
25.
J. T.
Edwards
,
N. J.
Ford
, and
A. C.
Simpson
,
J. Comput. Appl. Math.
148
(
2
),
401
418
(
2002
).
26.
L.
Chen
,
T.
Zhao
,
W.
Li
, and
J.
Zhao
,
Nonlinear Dyn.
83
(
1–2
),
529
539
(
2016
).
27.
Z.
Huang
,
W.
Zhu
, and
Y.
Suzuki
,
J. Sound Vib.
238
(
2
),
233
256
(
2000
).
28.
Z.
Huang
,
W.
Zhu
,
Y.
Ni
, and
J.
Ko
,
J. Sound Vib.
254
(
2
),
245
267
(
2002
).
29.
W.
Zhu
,
Z.
Huang
, and
Y.
Suzuki
,
Int. J. Non-Linear Mech.
36
(
8
),
1235
1250
(
2001
).
You do not currently have access to this content.