The collapse of flows onto hypersurfaces where their vector fields are discontinuous creates highly robust states called sliding modes. The way flows exit from such sliding modes can lead to complex and interesting behaviour about which little is currently known. Here, we examine the basic mechanisms by which a flow exits from sliding, either along a switching surface or along the intersection of two switching surfaces, with a view to understanding sliding and exit when many switches are involved. On a single switching surface, exit occurs via tangency of the flow to the switching surface. Along an intersection of switches, exit can occur at a tangency with a lower codimension sliding flow, or by a spiralling of the flow that exhibits geometric divergence (infinite steps in finite time). Determinacy-breaking can occur where a singularity creates a set-valued flow in an otherwise deterministic system, and we resolve such dynamics as far as possible by blowing up the switching surface into a switching layer. We show preliminary simulations exploring the role of determinacy-breaking events as organizing centres of local and global dynamics.

1.
M.
Abramowitz
and
I.
Stegun
,
Handbook of Mathematical Functions
(
Dover
,
1964
).
2.
M. A.
Aizerman
and
E. S.
Pyatnitskii
, “
Fundamentals of the theory of discontinuous systems I,II
,”
Autom. Remote Control
35
,
1066
1079 and 1242–1292
(
1974
).
3.
J.
Awrejcewicz
,
L.
Dzyubak
, and
C.
Grebogi
, “
Estimation of chaotic and regular (stick-slip and slip-slip) oscillations exhibited by coupled oscillators with dry friction
,”
Nonlinear Dyn.
42
,
383
394
(
2005
).
4.
G.
Bachar
,
E.
Segev
,
O.
Shtempluck
,
E.
Buks
, and
S. W.
Shaw
, “
Noise induced intermittency in a superconducting microwave resonator
,”
EPL
89
(
1
),
17003
(
2010
).
5.
G.-I.
Bischi
,
F.
Lamantia
, and
D.
Radi
, “
Multispecies exploitation with evolutionary switching of harvesting strategies
,”
Nat. Resour. Model.
26
(
4
),
546
571
(
2013
).
6.
R.
Burridge
and
L.
Knopoff
, “
Model and theoretical seismicity
,”
Bull. Seismol. Soc. Am.
57
,
341
371
(
1967
).
7.
A.
Colombo
,
M.
di Bernardo
,
S. J.
Hogan
, and
M. R.
Jeffrey
, “
Bifurcations of piecewise smooth flows: Perspectives, methodologies and open problems
,”
Physica D
241
(
22
),
1845
1860
(
2012
).
8.
A.
Colombo
and
M. R.
Jeffrey
, “
The two-fold singularity: leading order dynamics in n-dimensions
,”
Physica D
263
,
1
10
(
2013
).
9.
M.
Desroches
,
B.
Krauskopf
, and
H. M.
Osinga
, “
Numerical continuation of canard orbits in slow-fast dynamical systems
,”
Nonlinearity
23
(
3
),
739
765
(
2010
).
10.
M.
di Bernardo
,
C. J.
Budd
,
A. R.
Champneys
, and
P.
Kowalczyk
,
Piecewise-Smooth Dynamical Systems: Theory and Applications
(
Springer
,
2008
).
11.
M.
di Bernardo
,
P.
Kowalczyk
, and
A.
Nordmark
, “
Sliding bifurcations: A novel mechanism for the sudden onset of chaos in dry friction oscillators
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
13
,
2935
2948
(
2003
).
12.
L.
Dieci
, “
Sliding motion on the intersection of two surfaces: Spirally attractive case
,”
Commun. Nonlinear Sci. Numer. Simul.
(in press).
13.
L.
Dieci
,
C.
Elia
, and
L.
Lopez
, “
A Filippov sliding vector field on an attracting co-dimension 2 discontinuity surface, and a limited loss-of-attractivity analysis
,”
J. Differ. Equations
254
,
1800
1832
(
2013
).
14.
A. F.
Filippov
,
Differential Equations with Discontinuous Righthand Sides
(
Kluwer
,
Dordrecht
,
1988
).
15.
M. R.
Francis
and
E. J.
Fertig
, “
Quantifying the dynamics of coupled networks of switches and oscillators
,”
PLoS One
7
(
1
),
1
8
(
2012
).
16.
P.
Glendinning
and
M. R.
Jeffrey
, “
Grazing-sliding bifurcations, the border collision normal form, and the curse of dimensionality for nonsmooth bifurcation theory
,”
Nonlinearity
28
,
263
283
(
2015
).
17.
A. V.
Hill
, “
The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves
,”
J. Physiol.
40
,
iv
vii
(
1910
).
18.
M. W.
Hirsh
,
C.
Pugh
, and
M.
Shub
,
Invariant Manifolds
, Lecture Notes in Mathematics Vol. 583 (
Springer
,
1977
).
19.
S. J.
Hogan
,
M. E.
Homer
,
M. R.
Jeffrey
, and
R.
Szalai
, “
Piecewise smooth dynamical systems theory: The case of the missing boundary equilibrium bifurcations
,” (submitted).
20.
M. R.
Jeffrey
, “
Dynamics at a switching intersection: Hierarchy, isonomy, and multiple-sliding
,”
SIAM J. Appl. Dyn. Syst.
13
(
3
),
1082
1105
(
2014
).
21.
M. R.
Jeffrey
, “
Hidden dynamics in models of discontinuity and switching
,”
Physica D
273–274
,
34
45
(
2014
).
22.
M. R.
Jeffrey
, “
Hidden degeneracies in piecewise smooth dynamical systems
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
(to be published).
23.
C. K. R. T.
Jones
,
Geometric Singular Perturbation Theory
, Lecture Notes in Mathematics Vol. 1609 (
Springer-Verlag
,
New York
,
1995
), pp.
44
120
.
24.
Yu. A.
Kuznetsov
,
S.
Rinaldi
, and
A.
Gragnani
, “
One-parameter bifurcations in planar Filippov systems
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
13
,
2157
2188
(
2003
).
25.
D. N.
Novaes
and
M. R.
Jeffrey
, “
Regularization of hidden dynamics in piecewise smooth flow
,”
J. Differ. Equations
259
,
4615
4633
(
2015
).
26.
S. H.
Piltz
,
M. A.
Porter
, and
P. K.
Maini
, “
Prey switching with a linear preference trade-off
,”
SIAM J. Appl. Math.
13
(
2
),
658
682
(
2014
).
27.
E.
Plahte
and
S.
Kloglum
, “
Analysis and generic properties of gene regulatory networks with graded response functions
,”
Physica D
201
,
150
176
(
2005
).
28.
D. J. W.
Simpson
, “
Scaling laws for large numbers of coexisting attracting periodic solutions in the border-collision normal form
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
24
(
9
),
1
28
(
2014
).
29.
M. A.
Teixeira
, “
Generic bifurcation of sliding vector fields
,”
J. Math. Anal. Appl.
176
,
436
457
(
1993
).
30.
M. A.
Teixeira
and
P. R.
da Silva
, “
Regularization and singular perturbation techniques for non-smooth systems
,”
Physica D
241
(
22
),
1948
1955
(
2012
).
31.
V. I.
Utkin
,
Sliding Modes in Control and Optimization
(
Springer-Verlag
,
1992
).
32.
M.
Wechselberger
, “
Existence and bifurcation of canards in 3 in the case of a folded node
,”
SIAM J. Appl. Dyn. Syst.
4
(
1
),
101
139
(
2005
).
You do not currently have access to this content.