Almost five decades ago, H. Fröhlich [H. Fröhlich, “Long-range coherence and energy storage in biological systems,” Int. J. Quantum Chem. 2(5), 641–649 (1968)] reported, on a theoretical basis, that the excitation of quantum modes of vibration in contact with a thermal reservoir may lead to steady states, where under high enough rate of energy supply, only specific low-frequency modes of vibration are strongly excited. This nonlinear phenomenon was predicted to occur in biomolecular systems, which are known to exhibit complex vibrational spectral properties, especially in the terahertz frequency domain. However, since the effects of terahertz or lower-frequency modes are mainly classical at physiological temperatures, there are serious doubts that Fröhlich's quantum description can be applied to predict such a coherent behavior in a biological environment, as suggested by the author. In addition, a quantum formalism makes the phenomenon hard to investigate using realistic molecular dynamics simulations (MD) as they are usually based on the classical principles. In the current paper, we provide a general classical Hamiltonian description of a nonlinear open system composed of many degrees of freedom (biomolecular structure) excited by an external energy source. It is shown that a coherent behaviour similar to Fröhlich's effect is to be expected in the classical case for a given range of parameter values. Thus, the supplied energy is not completely thermalized but stored in a highly ordered fashion. The connection between our Hamiltonian description, carried out in the space of normal modes, and a more standard treatment in the physical space is emphasized in order to facilitate the prediction of the effect from MD simulations. It is shown how such a coherent phenomenon may induce long-range resonance effects that could be of critical importance at the biomolecular level. The present work is motivated by recent experimental evidences of long-lived excited low-frequency modes in protein structures, which were reported as a consequence of the Fröhlich's effect.

1.
A.
Markelz
,
S.
Whitmire
,
J.
Hillebrecht
, and
R.
Birge
, “
THz time domain spectroscopy of biomolecular conformational modes
,”
Phys. Med. Biol.
47
(
21
),
3797
(
2002
).
2.
C.
Zhang
,
E.
Tarhan
,
A.
Ramdas
,
A.
Weiner
, and
S. M.
Durbin
, “
Broadened far-infrared absorption spectra for hydrated and dehydrated myoglobin
,”
J. Phys. Chem. B
108
(
28
),
10077
10082
(
2004
).
3.
J.
Xu
,
K. W.
Plaxco
, and
S. J.
Allen
, “
Probing the collective vibrational dynamics of a protein in liquid water by terahertz absorption spectroscopy
,”
Protein Sci.
15
(
5
),
1175
1181
(
2006
).
4.
D. A.
Turton
,
H. M.
Senn
,
T.
Harwood
,
A. J.
Lapthorn
,
E. M.
Ellis
, and
K.
Wynne
, “
Terahertz underdamped vibrational motion governs protein-ligand binding in solution
,”
Nat. Commun.
5
,
3999
(
2014
).
5.
R. J.
Falconer
and
A. G.
Markelz
, “
Terahertz spectroscopic analysis of peptides and proteins
,”
J. Infrared, Millimeter, Terahertz Waves
33
(
10
),
973
988
(
2012
).
6.
W. F.
Van Gunsteren
,
D.
Bakowies
,
R.
Baron
,
I.
Chandrasekhar
,
M.
Christen
,
X.
Daura
,
P.
Gee
,
D. P.
Geerke
,
A.
Glättli
,
P. H.
Hünenberger
 et al, “
Biomolecular modeling: Goals, problems, perspectives
,”
Angew. Chem., Int. Ed.
45
(
25
),
4064
4092
(
2006
).
7.
L.
Skjaerven
,
S. M.
Hollup
, and
N.
Reuter
, “
Normal mode analysis for proteins
,”
J. Mol. Struct.: THEOCHEM
898
(
1
),
42
48
(
2009
).
8.
M.
Heyden
and
M.
Havenith
, “
Combining THz spectroscopy and MD simulations to study protein-hydration coupling
,”
Methods
52
(
1
),
74
83
(
2010
).
9.
V.
Conti Nibali
and
M.
Havenith
, “
New insights into the role of water in biological function: Studying solvated biomolecules using terahertz absorption spectroscopy in conjunction with molecular dynamics simulations
,”
J. Am. Chem. Soc.
136
(
37
),
12800
12807
(
2014
).
10.
K.
Brown
,
S.
Erfurth
,
E.
Small
, and
W.
Peticolas
, “
Conformationally dependent low-frequency motions of proteins by laser Raman spectroscopy
,”
Proc. Natl. Acad. Sci. U.S.A.
69
(
6
),
1467
1469
(
1972
).
11.
L.
Genzel
,
F.
Keilmann
,
T.
Martin
,
G.
Wintreling
,
Y.
Yacoby
,
H.
Fröhlich
, and
M. W.
Makinen
, “
Low-frequency Raman spectra of lysozyme
,”
Biopolymers
15
(
1
),
219
225
(
1976
).
12.
H.
Fröhlich
, “
Long-range coherence and energy storage in biological systems
,”
Int. J. Quantum Chem.
2
(
5
),
641
649
(
1968
).
13.
H.
Fröhlich
, “
The biological effects of microwaves and related questions
,”
Adv. Electron. Electron Phys.
53
,
85
152
(
1980
).
14.
T.
Wu
and
S.
Austin
, “
Bose condensation in biosystems
,”
Phys. Lett. A
64
(
1
),
151
152
(
1977
).
15.
T.
Wu
and
S.
Austin
, “
Cooperative behavior in biological systems
,”
Phys. Lett. A
65
(
1
),
74
76
(
1978
).
16.
M.
Cifra
,
J.
Pokornỳ
,
D.
Havelka
, and
O.
Kučera
, “
Electric field generated by axial longitudinal vibration modes of microtubule
,”
BioSystems
100
(
2
),
122
131
(
2010
).
17.
J.
Preto
,
M.
Pettini
, and
J. A.
Tuszynski
, “
Possible role of electrodynamic interactions in long-distance biomolecular recognition
,”
Phys. Rev. E
91
(
5
),
052710
(
2015
).
18.
J. R.
Reimers
,
L. K.
McKemmish
,
R. H.
McKenzie
,
A. E.
Mark
, and
N. S.
Hush
, “
Weak, strong, and coherent regimes of Fröhlich condensation and their applications to terahertz medicine and quantum consciousness
,”
Proc. Natl. Acad. Sci. U.S.A.
106
(
11
),
4219
4224
(
2009
).
19.
G. L.
Sewell
, “
Quantum macrostatistical theory of nonequilibrium steady states
,”
Rev. Math. Phys.
17
(
09
),
977
1020
(
2005
).
20.
H. E.
Kadji
,
J. C.
Orou
,
R.
Yamapi
, and
P.
Woafo
, “
Nonlinear dynamics and strange attractors in the biological system
,”
Chaos, Solitons Fractals
32
(
2
),
862
882
(
2007
).
21.
F.
Belloni
,
V.
Nassisi
,
P.
Alifano
,
C.
Monaco
,
A.
Tala
,
M.
Tredici
, and
A.
Raino
, “
A suitable plane transmission line at 900 MHz rf fields for E. coli DNA studies
,”
Rev. Sci. Instrum.
76
(
5
),
054302
(
2005
).
22.
A. G.
Pakhomov
,
Y.
Akyel
,
O. N.
Pakhomova
,
B. E.
Stuck
, and
M. R.
Murphy
, “
Current state and implications of research on biological effects of millimeter waves
,”
Bioelectromagnetics
19
(
7
),
393
413
(
1998
).
23.
G.
Gervino
,
E.
Autino
,
E.
Kolomoets
,
G.
Leucci
, and
M.
Balma
, “
Diagnosis of bladder cancer at 465 MHz
,”
Electromagn. Biol. Med.
26
(
2
),
119
134
(
2007
).
24.
E.
Del Giudice
,
A.
De Ninno
,
M.
Fleischmann
,
G.
Mengoli
,
M.
Milani
,
G.
Talpo
, and
G.
Vitiello
, “
Coherent quantum electrodynamics in living matter
,”
Electromagn. Biol. Med.
24
(
3
),
199
210
(
2005
).
25.
M.
Cifra
,
J. Z.
Fields
, and
A.
Farhadi
, “
Electromagnetic cellular interactions
,”
Prog. Biophys. Mol. Biol.
105
(
3
),
223
246
(
2011
).
26.
I. V.
Lundholm
,
H.
Rodilla
,
W. Y.
Wahlgren
,
A.
Duelli
,
G.
Bourenkov
,
J.
Vukusic
,
R.
Friedman
,
J.
Stake
,
T.
Schneider
, and
G.
Katona
, “
Terahertz radiation induces non-thermal structural changes associated with Fröhlich condensation in a protein crystal
,”
Struct. Dyn.
2
(
5
),
054702
(
2015
).
27.
J.
Pokornỳ
, “
Excitation of vibrations in microtubules in living cells
,”
Bioelectrochemistry
63
(
1
),
321
326
(
2004
).
28.
I.
Turcu
, “
A generic model for the Fröhlich rate equations
,”
Phys. Lett. A
234
(
3
),
181
186
(
1997
).
29.
I.
Prigogine
,
Non-Equilibrium Statistical Mechanics: Monographs in Statistical Physics and Thermodynamics
(
Wiley Interscience
,
New York
,
1962
).
30.
C. W.
Gardiner
 et al,
Handbook of Stochastic Methods
(
Springer
,
Berlin
,
1985
), Vol.
3
.
31.
J.
Preto
, “
Semi-classical statistical approach to Fröhlich condensation theory
,”
J. Biol. Phys.
preprint arXiv:1203.2006.
32.
J.
Pokorny
and
T.-M.
Wu
,
Biophysical Aspects of Coherence and Biological Order
(
Springer
,
1998
).
33.
J.
Geesink
and
D.
Meijer
, “
Bio-soliton model that predicts non-thermal electromagnetic radiation frequency bands, that either stabilize or destabilize life conditions
,” preprint arXiv:1610.04855 (
2016
).
34.
D. P.
Craig
and
T.
Thirunamachandran
,
Molecular Quantum Electrodynamics: An Introduction to Radiation-Molecule Interactions
(
Courier Corporation
,
1984
).
35.
M.
Stephen
, “
First-order dispersion forces
,”
J. Chem. Phys.
40
(
3
),
669
673
(
1964
).
36.
A.
McLachlan
, “
Resonance transfer of molecular excitation energy
,”
Mol. Phys.
8
(
5
),
409
423
(
1964
).
37.
J.
Preto
and
M.
Pettini
, “
Resonant long-range interactions between polar macromolecules
,”
Phys. Lett. A
377
(
8
),
587
591
(
2013
).
38.
J.
Preto
,
E.
Floriani
,
I.
Nardecchia
,
P.
Ferrier
, and
M.
Pettini
, “
Experimental assessment of the contribution of electrodynamic interactions to long-distance recruitment of biomolecular partners: Theoretical basis
,”
Phys. Rev. E
85
(
4
),
041904
(
2012
).
39.
I.
Nardecchia
,
L.
Spinelli
,
J.
Preto
,
M.
Gori
,
E.
Floriani
,
S.
Jaeger
,
P.
Ferrier
, and
M.
Pettini
, “
Experimental detection of long-distance interactions between biomolecules through their diffusion behavior: Numerical study
,”
Phys. Rev. E
90
(
2
),
022703
(
2014
).
40.
W.
Heisenberg
, “
Mehrkörperproblem und resonanz in der quantenmechanik
,”
Z. Phys.
38
(
6
),
411
426
(
1926
).
41.
F.
London
, “
Über einige eigenschaften und anwendungen der molekularkräfte
,”
Z. Phys. Chem.
11
,
222
251
(
1930
).
42.
A. S.
Davydov
, “
Solitons in molecular systems
,” in
Nonlinear and Turbulent Processes in Physics
(
Netherlands
,
1985
), Vol.
1
, p.
731
.
43.
H.
Fröhlich
, “
Selective long range dispersion forces between large systems
,”
Phys. Lett. A
39
(
2
),
153
154
(
1972
).
44.
M.
Boström
,
J.
Longdell
,
D. J.
Mitchell
, and
B.
Ninham
, “
Resonance interaction between one excited and one ground state atom
,”
Eur. Phys. J. D
22
(
1
),
47
52
(
2003
).
45.
R.
Zwanzig
,
Nonequilibrium Statistical Mechanics
(
Oxford University Press
,
2001
).
46.
F.
Šrobár
, “
Radiating Fröhlich system as a model of cellular electromagnetism
,”
Electromagn. Biol. Med.
34
(
4
),
355
360
(
2015
).
47.
N.
Ashcroft
and
N.
Mermin
,
Solid State Physics
(
Cengage Learning
,
2011
).
48.
D.
Van Der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J.
Berendsen
, “
Gromacs: Fast, flexible, and free
,”
J. Comput. Chem.
26
(
16
),
1701
1718
(
2005
).
49.
D. A.
Pearlman
,
D. A.
Case
,
J. W.
Caldwell
,
W. S.
Ross
,
T. E.
Cheatham
,
S.
DeBolt
,
D.
Ferguson
,
G.
Seibel
, and
P.
Kollman
, “
Amber, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules
,”
Comput. Phys. Commun.
91
(
1
),
1
41
(
1995
).
50.
N. J.
English
and
D. A.
Mooney
, “
Denaturation of hen egg white lysozyme in electromagnetic fields: A molecular dynamics study
,”
J. Chem. Phys.
126
(
9
),
091105
(
2007
).
51.
S.
Luccioli
,
A.
Imparato
,
S.
Lepri
,
F.
Piazza
, and
A.
Torcini
, “
Discrete breathers in a realistic coarse-grained model of proteins
,”
Phys. Biol.
8
(
4
),
046008
(
2011
).
52.
W.
Chen
,
M.
Sharma
,
R.
Resta
,
G.
Galli
, and
R.
Car
, “
Role of dipolar correlations in the infrared spectra of water and ice
,”
Phys. Rev. B
77
(
24
),
245114
(
2008
).
53.
H.
Bolterauer
, “
Elementary arguments that the Wu–Austin Hamiltonian has no finite ground state (the search for a microscopic foundation of Fröhlichs theory)
,”
Bioelectrochem. Bioenerg.
48
(
2
),
301
304
(
1999
).
54.
C. W.
Gardiner
,
Handbook of Stochastic Methods
, 3rd ed. (
Springer
,
Berlin
,
1983
).
You do not currently have access to this content.