This paper studies the distributed consensus and containment problems for a group of harmonic oscillators with a directed communication topology. First, for consensus without a leader, a class of distributed consensus protocols is designed by using motion planning and Pontryagin's principle. The proposed protocol only requires relative information measurements at the sampling instants, without requiring information exchange over the sampled interval. By using stability theory and the properties of stochastic matrices, it is proved that the distributed consensus problem can be solved in the motion planning framework. Second, for the case with multiple leaders, a class of distributed containment protocols is developed for followers such that their positions and velocities can ultimately converge to the convex hull formed by those of the leaders. Compared with the existing consensus algorithms, a remarkable advantage of the proposed sampled-data-based protocols is that the sampling periods, communication topologies and control gains are all decoupled and can be separately designed, which relaxes many restrictions in controllers design. Finally, some numerical examples are given to illustrate the effectiveness of the analytical results.

1.
R.
Olfati-Saber
and
R. M.
Murray
, “
Consensus problems in networks of agents with switching topology and time-delays
,”
IEEE Trans. Autom. Control
49
,
1520
1533
(
2004
).
2.
Y.
Cao
and
W.
Ren
, “
Distributed coordinated tracking with reduced interaction via a variable structure approach
,”
IEEE Trans. Autom. Control
57
,
33
48
(
2012
).
3.
Z.
Li
,
W.
Ren
,
X.
Liu
, and
M.
Fu
, “
Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders
,”
Int. J. Robust Nonlinear Control
23
,
534
547
(
2013
).
4.
Yu.
Zhao
,
Z.
Duan
,
G.
Wen
, and
G.
Chen
, “
Distributed finite-time tracking of multiple non-identical second-order nonlinear systems with settling time estimation
,”
Automatica
64
,
86
93
(
2016
).
5.
Yu.
Zhao
and
Z.
Duan
, “
Finite-time containment control without velocity and acceleration measurements
,”
Nonlinear Dyn.
82
,
259
268
(
2015
).
6.
A.
Jadbabaie
,
J.
Lin
, and
A. S.
Morse
, “
Coordination of groups of mobile autonomous agents using nearest neighbor rules
,”
IEEE Trans. Autom. Control
48
,
988
1001
(
2003
).
7.
W.
Ren
and
R. W.
Beard
, “
Consensus seeking in multiagent systems under dynamically changing interaction topologies
,”
IEEE Trans. Autom. Control
50
,
655
661
(
2005
).
8.
M.
Cao
,
A. S.
Morse
, and
B. D. O.
Anderson
, “
Agreeing asynchronously
,”
IEEE Trans. Autom. Control
53
,
1826
1838
(
2008
).
9.
G.
Wen
,
W.
Yu
,
M. Z. Q.
Chen
, and
X.
Yu
, “
H pinning synchronization of directed networks with aperiodic sampled-data communications
,”
IEEE Trans. Circuits Syst. I
61
,
3245
3255
(
2014
).
10.
G.
Wen
,
W.
Yu
,
G.
Hu
, and
J.
Cao
, “
Pinning synchronization of directed Networks with switching topologies: A multiple Lyapunov functions approach
,”
IEEE Trans. Neural Networks Learn. Syst.
26
,
3239
3250
(
2015
).
11.
Y.
Liu
and
Z.
Geng
, “
Finite-time formation control for linear multi-agent systems: A motion planning approach
,”
Syst. Control Lett.
85
,
54
60
(
2015
).
12.
Y.
Liu
,
Yu.
Zhao
, and
Z.
Geng
, “
Finite-time formation tracking control for multiple vehicles: A motion planning approach
,”
Int. J. Robust Nonlinear Control
26
,
3130
(
2015
).
13.
Yu.
Zhao
,
Y.
Liu
,
Z.
Duan
, and
G.
Chen
, “
Distributed average computation for multiple time-varying signals with output measurements
,”
Int. J. Robust Nonlinear Control
26
,
2899
(
2015
).
14.
H.
Su
,
G.
Chen
,
X.
Wang
, and
Z.
Lin
, “
Adaptive second-order consensus of networked mobile agents with nonlinear dynamics
,”
Automatica
47
,
368
375
(
2011
).
15.
G.
Hu
, “
Robust consensus tracking of a class of second-order multi-agent dynamic systems
,”
Syst. Control Lett.
61
,
134
142
(
2012
).
16.
Y.
Hong
,
G.
Chen
, and
L.
Bushnell
, “
Distributed observers design for leader-following control of multi-agent networks
,”
Automatica
44
,
846
850
(
2008
).
17.
Q.
Song
,
J.
Cao
, and
W.
Yu
, “
Second-order leader-following consensus for nonlinear multi-agent systems via pinning control
,”
Syst. Control Lett.
59
,
553
562
(
2010
).
18.
Y.
Zhang
,
Y.
Yang
, and
Z.
Yu
, “
Finite-time consensus tracking for harmonic oscillators using both state feedback control and output feedback control
,”
Int. J. Robust Nonlinear Control
23
,
878
893
(
2013
).
19.
J.
Fu
and
J.
Wang
, “
Adaptive coordinated tracking of multi-agent systems with quantized information
,”
Syst. Control Lett.
74
,
115
125
(
2014
).
20.
J.
Sun
and
Z.
Geng
, “
Adaptive output feedback consensus tracking for linear multi-agent systems with unknown dynamics
,”
Int. J. Control
88
,
1735
(
2015
).
21.
Yu.
Zhao
,
Z.
Duan
, and
G.
Wen
, “
Distributed finite-time tracking of multiple Euler–Lagrange systems without velocity measurements
,”
Int. J. Robust Nonlinear Control
25
,
1688
1703
(
2015
).
22.
Yu.
Zhao
,
Z.
Duan
, and
G.
Wen
, “
Distributed finite-time tracking for a multi-agent system under a leader with bounded unknown acceleration
,”
Syst. Control Lett.
81
,
8
13
(
2015
).
23.
G.
Notarstefanoa
,
M.
Egerstedt
, and
M.
Haque
, “
Containment in leader–follower networks with switching communication topologies
,”
Automatica
47
,
1035
1040
(
2011
).
24.
Yu.
Zhao
,
Z.
Duan
,
G.
Wen
, and
Y.
Zhang
, “
Distributed finite-time tracking control for multi-agent systems: An observer-based approach
,”
Syst. Control Lett.
62
,
22
28
(
2013
).
25.
C.
Xu
,
Y.
Zheng
,
H.
Su
, and
H. O.
Wang
, “
Containment control for coupled harmonic oscillators with multiple leaders under directed topology
,”
Int. J. Control
88
,
248
255
(
2015
).
26.
G.
Wen
,
Yu.
Zhao
,
Z.
Duan
, and
W.
Yu
, “
Containment of higher-order multi-leader multi-agent systems: A dynamic output approach
,”
IEEE Trans. Autom. Control
61
,
1135
(
2015
).
27.
Z.
Meng
,
W.
Ren
, and
Z.
You
, “
Distributed finite-time attitude containment control for multiple rigid bodies
,”
Automatica
46
,
2092
2099
(
2010
).
28.
J.
Mei
,
W.
Ren
, and
G.
Ma
, “
Distributed containment control for Lagrangian networks with parametric uncertainties under a directed graph
,”
Automatica
48
,
653
659
(
2012
).
29.
G.
Xie
,
H.
Liu
,
L.
Wang
, and
Y.
Jia
, “
Consensus in networked multi-agent systems via sampled control: fixed topology case
,” in
Proceedings of 2009 American Control Conference, St. Louis, Missouri
(
2009
), pp.
3902
3907
.
30.
Y.
Cao
and
W.
Ren
, “
Multi-vehicle coordination for double-integrator dynamics under fixed undirected/directed interaction in a sampled-data setting
,”
Int. J. Robust Nonlinear Control
20
,
987
1000
(
2010
).
31.
W.
Yu
,
W.
Zheng
,
G.
Chen
, and
J.
Cao
, “
Second-order consensus in multi-agent dynamical systems with sampled position data
,”
Automatica
47
,
1496
1503
(
2011
).
32.
Q.
Ma
,
S.
Xu
, and
F. L.
Lewis
, “
Second-order consensus for directed multi-agent systems with sampled data
,”
Int. J. Robust Nonlinear Control
24
,
2560
2573
(
2013
).
33.
N.
Huang
,
Z.
Duan
, and
G.
Chen
, “
Some necessary and sufficient conditions for consensus of second-order multi-agent systems with sampled position data
,”
Automatica
63
,
148
155
(
2016
).
34.
W.
Sun
,
C.
Huang
,
J.
Lu
,
X.
Li
, and
S.
Chen
, “
Velocity synchronization of multi-agent systems with mismatched parameters via sampled position data
,”
Chaos
26
,
023106
(
2016
).
35.
G.
Wen
,
Z.
Duan
,
W.
Yu
, and
G.
Chen
, “
Consensus of multi-agent systems with nonlinear dynamics and sampled-data information: a delayed-input approach
,”
Int. J. Robust Nonlinear Control
23
,
602
(
2013
).
36.
R. A.
Horn
and
C. R.
Johnson
,
Matrix Analysis
(
Cambridge University Press
,
New York
,
1985
).
37.
C.
Godsil
and
G.
Royle
,
Algebraic Graph Theory
(
Springer
,
New York
,
2001
).
38.
A. E.
Bryson
and
Y.-C.
Ho
,
Applied Optimal Control
(
Hemisphere Publishing Corporation
,
1975
).
You do not currently have access to this content.