The paper deals with a dynamical system governing the motion of two point vortices embedded in the bottom layer of a two-layer rotating flow experiencing linear deformation and their influence on fluid particle advection. The linear deformation consists of shear and rotational components. If the deformation is stationary, the vortices can move periodically in a bounded region. The vortex periodic motion induces stirring patterns of passive fluid particles in the both layers. We focus our attention on the upper layer where the bottom-layer singular point vortices induce a regular velocity field with no singularities. In the upper layer, we determine a steady-state regime featuring no closed fluid particle trajectories associated with the vortex motion. Thus, in the upper layer, the flow's streamlines look like there is only external linear deformation and no vortices. In this case, fluid particles move along trajectories of almost regular elliptic shapes. However, the system dynamics changes drastically if the underlying vortices cease to be stationary and instead start moving periodically generating a nonstationary perturbation for the fluid particle advection. Then, we demonstrate that this steady-state regime transits to a perturbed state with a rich phase portrait structure featuring both periodic and chaotic fluid particle trajectories. Thus, the perturbed state clearly manifests the impact of the underlying vortex motion. An analysis, based on comparing the eigenfrequencies of the steady-state fluid particle rotation with the ones of the vortex rotation, is carried out, and parameters ensuring effective fluid particle stirring are determined. The process of separatrix reconnection of close stability islands leading to an enhanced chaotic region is reported and analyzed.

1.
D. B.
Chelton
,
P.
Gaube
,
M. G.
Schlax
,
J.
Early
, and
R. M.
Samelson
, “
The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll
,”
Science
334
,
328
332
(
2011
).
2.
Z.
Zhang
,
W.
Wang
, and
B.
Qiu
, “
Oceanic mass transport by mesoscale eddies
,”
Science
345
,
322
324
(
2014
).
3.
C.
Dong
,
J. C.
McWilliams
,
Y.
Liu
, and
D.
Chen
, “
Global heat and salt transports by eddy movement
,”
Nat. Commun.
5
,
3294
(
2014
).
4.
I.
Bashmachnikov
and
X.
Carton
, “
Surface signature of Mediterranean water eddies in the northeastern Atlantic: Effect of the upper ocean stratification
,”
Ocean Sci.
8
,
931
943
(
2012
).
5.
J.
Wang
,
G. R.
Flierl
,
J. H.
LaCasce
,
J. L.
McClean
, and
A.
Mahadevan
, “
Reconstructing the ocean's interior from surface data
,”
J. Phys. Oceanogr.
43
,
1611
1626
(
2013
).
6.
C.
Assassi
,
Y.
Morel
,
F.
Vandermeirsch
,
A.
Chaigneau
,
C.
Pegliasco
,
R.
Morrow
,
F.
Colas
,
S.
Fleury
,
X.
Carton
,
P.
Klein
, and
R.
Cambra
, “
An index to distinguish surface and subsurface intensified vortices from surface observations
,”
J. Phys. Oceanogr.
(published online
2016
).
7.
X.
Carton
,
B.
Le Cann
,
A.
Serpette
, and
J.
Dubert
, “
Interactions of surface and deep anticyclonic eddies in the Bay of Biscay
,”
J. Mar. Syst.
109
,
S45
S59
(
2013
).
8.
M. A.
Sokolovskiy
,
X. J.
Carton
,
B. N.
Filyushkin
, and
O. I.
Yakovenko
, “
Interaction between a surface jet and subsurface vortices in a three-layer quasi-geostrophic model
,”
Geophys. Astrophys. Fluid Dyn.
110
,
201
223
(
2016
).
9.
D.
Ciani
,
X.
Carton
, and
J.
Verron
, “
On the merger of subsurface isolated vortices
,”
Geophys. Astrophys. Fluid Dyn.
110
,
23
49
(
2016
).
10.
J. N.
Reinaud
,
D. G.
Dritschel
, and
X.
Carton
, “
Interaction between a surface quasi-geostrophic buoyancy filament and an internal vortex
,”
Geophys. Astrophys. Fluid Dyn.
110
,
461
490
(
2016
).
11.
G. F.
Carnevale
,
J. C.
McWilliams
,
Y.
Pomeau
,
J. B.
Weiss
, and
W. R.
Young
, “
Evolution of vortex statistics in 2-dimensional turbulence
,”
Phys. Rev. Lett.
66
,
2735
2737
(
1991
).
12.
G. M.
Reznik
, “
Dynamics of singular vortices on a beta-plane
,”
J. Fluid Mech.
240
,
405
432
(
1992
).
13.
S.
Thorpe
, “
The breakup of Langmuir circulation and the instability of an array of vortices
,”
J. Phys. Oceanogr.
22
,
350
360
(
1992
).
14.
G.
Csanady
, “
Vortex pair model of Langmuir circulation
,”
J. Mar. Res.
52
,
559
581
(
1994
).
15.
K. V.
Koshel
and
S. V.
Prants
, “
Chaotic advection in the ocean
,”
Phys.-Usp.
49
,
1151
1178
(
2006
).
16.
V. M.
Gryanik
,
M. A.
Sokolovskiy
, and
J.
Verron
, “
Dynamics of Heton-like vortices
,”
Regular Chaotic Dyn.
11
,
383
434
(
2006
).
17.
G.
Reznik
and
Z.
Kizner
, “
Two-layer quasi-geostrophic singular vortices embedded in a regular flow. Part 1. Invariants of motion and stability of vortex pairs
,”
J. Fluid Mech.
584
,
185
202
(
2007
).
18.
P. J.
Torres
,
P. G.
Kevrekidis
,
D. J.
Frantzeskakis
,
R.
Carretero-Gonzalez
,
P.
Schmelcher
, and
D. S.
Hall
, “
Dynamics of vortex dipoles in confined Bose–Einstein condensates
,”
Phys. Lett. A
375
,
3044
3050
(
2011
).
19.
G.
Drotos
,
T.
Tel
, and
G.
Kovacs
, “
Modulated point-vortex pairs on a rotating sphere: Dynamics and chaotic advection
,”
Phys. Rev. E
87
,
063017
(
2013
).
20.
Z.
Kizner
, “
On the stability of two-layer geostrophic point-vortex multipoles
,”
Phys. Fluids
26
,
046602
(
2014
).
21.
G.
Moon
,
W. J.
Kwon
,
H.
Lee
, and
Y.-I.
Shin
, “
Thermal friction on quantum vortices in a Bose–Einstein condensate
,”
Phys. Rev. A
92
,
051601
(
2015
).
22.
J.
Reinaud
and
X.
Carton
, “
The interaction between two oppositely travelling, horizontally offset, antisymmetric quasi-geostrophic hetons
,”
J. Fluid Mech.
794
,
409
443
(
2016
).
23.
K.
Kasamatsu
,
M.
Eto
, and
M.
Nitta
, “
Short-range intervortex interaction and interacting dynamics of half-quantized vortices in two-component Bose–Einstein condensates
,”
Phys. Rev. A
93
,
013615
(
2016
).
24.
E.
Novikov
, “
Dynamics and statistics of a system of vortices
,”
Sov. Phys. - JETP
68
,
1868
1882
(
1975
).
25.
H.
Aref
, “
Motion of three vortices
,”
Phys. Fluids
22
,
393
400
(
1979
).
26.
H.
Aref
, “
Integrable, chaotic, and turbulent vortex motion in two-dimensional flows
,”
Annu. Rev. Fluid Mech.
15
,
345
389
(
1983
).
27.
J. C.
McWilliams
, “
The emergence of isolated coherent vortices in turbulent flow
,”
J. Fluid Mech.
146
,
21
43
(
1984
).
28.
G.
Manucharyan
and
M.-L.
Timmermans
, “
Generation and separation of mesoscale eddies from surface ocean fronts
,”
J. Phys. Oceanogr.
43
,
2545
2562
(
2013
).
29.
R. M.
Samelson
, “
Lagrangian motion, coherent structures, and lines of persistent material strain
,”
Annu. Rev. Mar. Sci.
5
,
137
163
(
2013
).
30.
M.
Kennelly
,
R.
Evans
, and
T.
Joyce
, “
Small-scale cyclones on the periphery of gulf stream warm-core rings
,”
J. Geophys. Res.
90
,
8845
8857
, doi: (
1985
).
31.
D.
Nof
, “
Generation of ringlets
,”
Tellus
45A
,
299
310
(
1993
).
32.
X.
Carton
, “
Hydrodynamical modeling of oceanic vortices
,”
Surv. Geophys.
22
,
179
263
(
2001
).
33.
J.
Paillet
,
B.
Le Cann
,
X.
Carton
,
Y.
Morel
, and
A.
Serpette
, “
Dynamics and evolution of a northern Meddy
,”
J. Phys. Oceanogr.
32
,
55
79
(
2002
).
34.
D. B.
Chelton
,
M. G.
Schlax
,
R. M.
Samelson
, and
R. A.
de Szoeke
, “
Global observations of large oceanic eddies
,”
Geophys. Res. Lett.
34
,
L15606
, doi: (
2007
).
35.
D. B.
Chelton
,
M. G.
Schlax
, and
R. M.
Samelson
, “
Global observations of nonlinear mesoscale eddies
,”
Prog. Oceanogr.
91
,
167
216
(
2011
).
36.
A. C.
Barbosa Aguiar
,
A.
Peliz
, and
X.
Carton
, “
A census of Meddies in a long-term high-resolution simulation
,”
Prog. Oceanogr.
116
,
80
94
(
2013
).
37.
X.
Carton
and
Y.
Morel
, “
Multipolar vortices in 2-dimensional incompressible flows
,”
J. Fluid Mech.
267
,
23
51
(
1994
).
38.
X.
Carton
and
B.
Legras
, “
The life-cycle of tripoles in 2-dimensional incompressible flows
,”
J. Fluid Mech.
267
,
53
82
(
1994
).
39.
E.
Ryzhov
and
M.
Sokolovskiy
, “
Interaction of a two-layer vortex pair with a submerged cylindrical obstacle in a two layer rotating fluid
,”
Phys. Fluids
28
,
056602
(
2016
).
40.
J. M.
Ottino
, “
Mixing, chaotic advection, and turbulence
,”
Annu. Rev. Fluid Mech.
22
,
207
253
(
1990
).
41.
H.
Aref
, “
Chaotic advection of fluid particles
,”
Phil. Trans. R. Soc. Lond. A
333
,
273
288
(
1990
).
42.
H.
Aref
, “
The development of chaotic advection
,”
Phys. Fluids
14
,
1315
1325
(
2002
).
43.
L.
Kuznetsov
and
G. M.
Zaslavsky
, “
Regular and chaotic advection in the flow field of a three-vortex system
,”
Phys. Rev. E
58
,
7330
7349
(
1998
).
44.
L.
Kuznetsov
and
G. M.
Zaslavsky
, “
Passive particle transport in three-vortex flow
,”
Phys. Rev. E
61
,
3777
3792
(
2000
).
45.
V. V.
Zhmur
and
K. K.
Pankratov
, “
The dynamics of the semi-ellipsoid subsurface vortex in the non-uniform flow
,”
Oceanology
29
,
205
211
(
1989
).
46.
B.
Legras
and
D.
Dritschel
, “
The elliptical model of two-dimensional vortex dynamics. I: The basic state
,”
Phys. Fluids
3
,
845
854
(
1991
).
47.
S. P.
Meacham
,
K. K.
Pankratov
,
A. F.
Shchepetkin
, and
V. V.
Zhmur
, “
The interaction of ellipsoidal vortices with background shear flows in a stratified fluid
,”
Dyn. Atmos. Oceans
21
,
167
212
(
1994
).
48.
X.
Perrot
and
X.
Carton
, “
Point-vortex interaction in an oscillatory deformation field: Hamiltonian dynamics, harmonic resonance and transition to chaos
,”
Discrete Contin. Dyn.-B
11
,
971
995
(
2009
).
49.
V.
Rom-Kedar
,
A.
Leonard
, and
A.
Wiggins
, “
An analytical study of transport, mixing and chaos in an unsteady vortical flow
,”
J. Fluid Mech.
214
,
347
394
(
1990
).
50.
W. J.
McKiver
and
D. G.
Dritschel
, “
The motion of a fluid ellipsoid in a general linear background flow
,”
J. Fluid Mech.
474
,
147
173
(
2003
).
51.
E. A.
Ryzhov
,
K. V.
Koshel
, and
X. J.
Carton
, “
Passive scalar advection in the vicinity of two point vortices in a deformation flow
,”
Eur. J. Mech. B- Fluid.
34
,
121
130
(
2012
).
52.
W. J.
McKiver
, “
The ellipsoidal vortex: A novel approach to geophysical turbulence
,”
Adv. Math. Phys.
2015
,
613683
(
2015
).
53.
K. V.
Koshel
,
E. A.
Ryzhov
, and
V. V.
Zhmur
, “
Effect of the vertical component of diffusion on passive scalar transport in an isolated vortex model
,”
Phys. Rev. E
92
,
053021
(
2015
).
54.
N. G.
Hogg
and
H. M.
Stommel
, “
The Heton, an elementary interaction between discrete baroclinic geostrophic vortices, and its implications concerning eddy heat-flow
,”
Proc. R. Soc. London A
397
,
1
20
(
1985
).
55.
W.
Young
, “
Some interactions between a small number of baroclinic, geostrophic vortices
,”
Geophys. Astrophys. Fluid Dyn.
33
,
35
61
(
1985
).
56.
V. M.
Gryanik
and
M. V.
Tevs
, “
Dynamics of singular geostrophical vortices in a n-level model of the atmosphere (ocean)
,”
Izv. Atmos. Ocean. Phys.
25
,
179
188
(
1989
).
57.
M. A.
Sokolovskiy
and
J.
Verron
,
Dynamics of Vortex Structures in a Stratified Rotating Fluid
(
Springer
,
2014
).
58.
E.
Ryzhov
,
K.
Koshel
, and
D.
Stepanov
, “
Background current concept and chaotic advection in an oceanic vortex flow
,”
Theor. Comput. Fluid Dyn.
24
,
59
64
(
2010
).
59.
E. A.
Ryzhov
and
K. V.
Koshel
, “
The effects of chaotic advection in a three-layer ocean model
,”
Izv. Atmos. Ocean. Phys.
47
,
241
251
(
2011
).
60.
E. A.
Ryzhov
and
K. V.
Koshel
, “
Interaction of a monopole vortex with an isolated topographic feature in a three-layer geophysical flow
,”
Nonlinear Processes Geophys.
20
,
107
119
(
2013
).
61.
E. A.
Ryzhov
and
K. V.
Koshel
, “
Estimating the size of the regular region of a topographically trapped vortex
,”
Geophys. Astrophys. Fluid Dyn.
105
,
536
551
(
2011
).
62.
E. A.
Ryzhov
and
K. V.
Koshel
, “
Global chaotization of fluid particle trajectories in a sheared two-layer two-vortex flow
,”
Chaos
25
,
103108
(
2015
).
63.
M. A.
Sokolovskiy
,
K. V.
Koshel
, and
X.
Carton
, “
Baroclinic multipole evolution in shear and strain
,”
Geophys. Astrophys. Fluid Dyn.
105
,
506
535
(
2011
).
64.
K. V.
Koshel
and
E. A.
Ryzhov
, “
Parametric resonance with a point-vortex pair in a nonstationary deformation flow
,”
Phys. Lett. A
376
,
744
747
(
2012
).
65.
E. A.
Ryzhov
and
K. V.
Koshel
, “
Two-point-vortex evolution in an oscillatory shear flow with rotation
,”
EPL
108
,
24002
(
2014
).
66.
E. A.
Ryzhov
and
K. V.
Koshel
, “
Parametric instability of a many point-vortex system in a multi-layer flow under linear deformation
,”
Regular Chaotic Dyn.
21
,
254
266
(
2016
).
67.
E. A.
Ryzhov
, “
On changing the size of the atmosphere of a vortex pair embedded in a periodic external shear flow
,”
Phys. Lett. A
375
,
3884
3889
(
2011
).
68.
J.
Stoer
and
R.
Bulirsch
,
Introduction to Numerical Analysis
(
Springer-Verlag
,
1993
) p.
660
.
69.
A. V.
Murray
,
A. J.
Groszek
,
P.
Kuopanportti
, and
T.
Simula
, “
Hamiltonian dynamics of two same-sign point vortices
,”
Phys. Rev. A
93
,
033649
(
2016
).
70.
B. V.
Chirikov
, “
A universal instability of many-dimensional oscillator systems
,”
Phys. Rep.
52
,
263
379
(
1979
).
71.
D.
del-Castillo-Negrete
and
P.
Morrison
, “
Chaotic transport by Rossby waves in shear flow
,”
Phys. Fluids
5
,
948
965
(
1993
).
72.
G.
Zaslavsky
,
The Physics of Chaos in Hamiltonian Systems
(
Imperial College Press
,
London
,
2007
).
73.
K. V.
Koshel
,
M. A.
Sokolovskiy
, and
P. A.
Davies
, “
Chaotic advection and nonlinear resonances in an oceanic flow above submerged obstacle
,”
Fluid Dyn. Res.
40
,
695
736
(
2008
).
74.
Y. G.
Izrailsky
,
K. V.
Koshel
, and
D. V.
Stepanov
, “
Determination of optimal excitation frequency range in background flows
,”
Chaos
18
,
013107
(
2008
).
75.
A.
Bower
, “
A simple kinematic mechanism for mixing fluid parcels across a meandering jet
,”
J. Phys. Oceanogr.
21
,
173
180
(
1991
).
76.
R. M.
Samelson
, “
Fluid exchange across a meandering jet
,”
J. Phys. Oceanogr.
22
,
431
440
(
1992
).
77.
R. P.
Behringer
,
S. D.
Meyers
, and
H. L.
Swinney
, “
Chaos and mixing in a geostrophic flow
,”
Phys. Fluids
3
,
1243
1249
(
1991
).
78.
R. T.
Pierrehumbert
and
H.
Yang
, “
Global chaotic mixing on isentropic surfaces
,”
J. Atmos. Sci.
50
,
2462
2480
(
1993
).
79.
M. V.
Budyansky
,
M. Y.
Uleysky
, and
S. V.
Prants
, “
Detection of barriers to cross-jet Lagrangian transport and its destruction in a meandering flow
,”
Phys. Rev. E
79
,
056215
(
2009
).
80.
M. Y.
Uleysky
,
M. V.
Budyansky
, and
S. V.
Prants
, “
Mechanism of destruction of transport barriers in geophysical jets with Rossby waves
,”
Phys. Rev. E
81
,
017202
(
2010
).
81.
A.
Neishtadt
,
V.
Sidorenko
, and
D.
Treschev
, “
Stable periodic motions in the problem on passage through a separatrix
,”
Chaos
7
,
2
11
(
1997
).
82.
D.
Treschev
, “
Width of stochastic layers in near-integrable two-dimensional symplectic maps
,”
Physica D
116
,
21
43
(
1998
).
83.
I. I.
Shevchenko
, “
The width of a chaotic layer
,”
Phys. Lett. A
372
,
808
816
(
2008
).
84.
S. M.
Soskin
and
R.
Mannella
, “
Maximal width of the separatrix chaotic layer
,”
Phys. Rev. E
80
,
066212
(
2009
).
85.
A. J.
Lichtenberg
and
M. A.
Lieberman
,
Regular and Chaotic Dynamics
, 2nd ed. (
Springer-Verlag
,
1992
).
86.
I. I.
Shevchenko
, “
Width of the chaotic layer: Maxima due to marginal resonances
,”
Phys. Rev. E
85
,
066202
(
2012
).
87.
A. V.
Artemyev
,
A. I.
Neishtadt
, and
L. M.
Zelenyi
, “
Rapid geometrical chaotization in slow-fast Hamiltonian systems
,”
Phys. Rev. E
89
,
060902
(
2014
).
88.
B. N.
Filyushkin
,
M. A.
Sokolovskiy
,
N. G.
Kozhelupova
, and
I. M.
Vagina
, “
Reflection of intrathermocline eddies on the ocean surface
,”
Dokl. Earth Sci.
439
,
986
989
(
2011
).
89.
M.
Sokolovskiy
,
B.
Filyushkin
, and
X.
Carton
, “
Dynamics of intrathermocline vortices in a gyre flow over a seamount chain
,”
Ocean Dyn.
63
,
741
760
(
2013
).
90.
P.
L'Hegaret
,
X.
Carton
,
I.
Ambar
,
C.
Menesguen
,
B.
Hua
,
L.
Chérubin
,
A.
Aguiar
,
B.
Le Cann
,
N.
Daniault
, and
N.
Serra
, “
Evidence of Mediterranean water dipole collision in the Gulf of Cadiz
,”
J. Geophys. Res.
119
,
5337
5359
, doi: (
2014
).
You do not currently have access to this content.