An epidemic of Ebola Virus Disease (EVD) broke out in Guinea in December 2013. It was only identified in March 2014 while it had already spread out in Liberia and Sierra Leone. The spill over of the disease became uncontrollable and the epidemic could not be stopped before 2016. The time evolution of this epidemic is revisited here with the global modeling technique which was designed to obtain the deterministic models from single time series. A generalized formulation of this technique for multivariate time series is introduced. It is applied to the epidemic of EVD in West Africa focusing on the period between March 2014 and January 2015, that is, before any detected signs of weakening. Data gathered by the World Health Organization, based on the official publications of the Ministries of Health of the three main countries involved in this epidemic, are considered in our analysis. Two observed time series are used: the daily numbers of infections and deaths. A four-dimensional model producing a very complex dynamical behavior is obtained. The model is tested in order to investigate its skills and drawbacks. Our global analysis clearly helps to distinguish three main stages during the epidemic. A characterization of the obtained attractor is also performed. In particular, the topology of the chaotic attractor is analyzed and a skeleton is obtained for its structure.

1.
W. O.
Kermack
and
A. G.
McKendrick
, “
A contribution to the mathematical theory of epidemics
,”
Proc. R. Soc. London A
115
,
700
721
(
1927
).
2.
J.
Shaman
,
W.
Yang
, and
S.
Kandula
, “
Inference and forecast of the current West African Ebola tweet outbreak in Guinea, Sierra Leone and Liberia
,”
PLOS Curr. Outbreaks
6
, Oct. 31 (
2014
).
3.
C. M.
Rivers
,
E. T.
Lofgren
,
M.
Marathe
,
S.
Eubank
, and
B. L.
Lewis
, “
Modeling the impact of interventions on an Epidemic of Ebola in Sierra Leone and Liberia
,”
PLOS Curr. Outbreaks
6
, Nov. 6 (
2014
).
4.
A.
Camacho
,
A. J.
Kucharski
,
S.
Funk
,
J.
Breman
,
P.
Piot
, and
W. J.
Edmunds
, “
Potential for large outbreaks of Ebola virus disease
,”
Epidemics
9
,
70
78
(
2014
).
5.
J.
Legrand
,
R. F.
Grais
,
P. Y.
Boelle
,
A. J.
Valleron
, and
A.
Flahault
, “
Understanding the dynamics of Ebola epidemics
,”
Epidemiol. Infect.
135
(
4
),
610
621
(
2007
).
6.
K. A.
Alexander
,
C. E.
Sanderson
,
M.
Marathe
,
B. L.
Lewis
,
C. M.
Rivers
 et al., “
What factors might have led to the emergence of Ebola in West Africa?
,”
PLoS Neglected Trop. Dis.
9
(
6
),
e0003652
(
2015
).
7.
Centers for Disease Control and Prevention
, see http://www.cdc.gov/vhf/ebola/outbreaks/history/ distribution-map.html for Cases of Ebola Virus Disease in Africa, 1976–2015 (last accessed 15 June
2016
).
8.
H.
Feldmann
and
T. W.
Geisbert
, “
Ebola haemorrhagic fever
,”
NIH-PA
377
(
9768
),
849
862
(
2011
).
9.
M. D.
Van Kerkhove
,
A. I.
Bento
,
H. L.
Mills
,
N. M.
Ferguson
, and
C. A.
Donnelly
, “
A review of epidemiological parameters from Ebola outbreaks to inform early public health decision-making
,”
Sci. Data
2
,
150019
(
2015
).
10.
S.
Mangiarotti
,
F.
Le Jean
,
M.
Huc
, and
C.
Letellier
, “
Global modeling of aggregated and associated chaotic dynamics
,”
Chaos, Solitons, Fractals
83
,
82
96
(
2016
).
11.
O.
Cenciarelli
,
S.
Pietropaoli
,
A.
Malizia
,
M.
Carestia
,
F.
D'Amico
,
A.
Sassolini
 et al., “
Ebola virus disease 2013–2014 outbreak in West Africa: An analysis of the epidemic spread and response
,”
Int. J. Microbiol.
2015
,
769121
.
12.
J.
Maquet
,
C.
Letellier
, and
L. A.
Aguirre
, “
Global models from the Canadian lynx cycles as a direct evidence for chaos in real ecosystems
,”
J. Math. Biol.
55
(
1
),
21
39
(
2007
).
13.
S.
Mangiarotti
,
L.
Drapeau
, and
C.
Letellier
, “
Two chaotic global models for cereal crops cycles observed from satellite in Northern Morocco
,”
Chaos
24
,
023130
(
2014
).
14.
G.
Boudjema
and
B.
Cazelles
, “
Constructing homoclinic orbits and chaotic attractors
,”
Chaos, Solitons, Fractals
12
,
2051
2069
(
2001
).
15.
S.
Mangiarotti
, “
Low dimensional chaotic models for the plague epidemic in Bombay (1896–1911)
,”
Chaos, Solitons, Fractals
81
(
A
),
184
196
(
2015
).
16.
E. M.
Leroy
,
B.
Kumulungui
,
X.
Pourrut
,
P.
Rouquet
,
A.
Hassanin
,
P.
Yaba
 et al., “
Fruit batsas reservoirs of Ebola virus
,”
Nature
438
,
575
576
(
2005
).
17.
A. T.
Peterson
,
J. T.
Bauer
, and
J. N.
Mills
, “
Ecologic and geographic distribution of filovirus disease
,”
Emerging Infect. Dis.
10
(
1
),
40
47
(
2004
).
18.
D. M.
Pigott
,
N.
Golding
,
A.
Mylne
,
Z.
Huang
,
A. J.
Henry
 et al., “
Mapping the zoonotic niche of Ebola virus disease in Africa
,”
eLife
3
,
e04395
(
2014
).
19.
K.
Norris
,
A.
Asase
,
B.
Collen
,
J.
Gockowksi
,
J.
Mason
,
B.
Phalan
, and
A.
Wadea
, “
Biodiversity in a forest-agriculture mosaic—The changing face of West African rainforests
,”
Biol. Conserv.
143
,
2341
2350
(
2010
).
20.
E. M.
Leroy
,
A.
Epelboin
,
V.
Mondonge
,
X.
Pourrut
,
J.-P.
Gonzalez
,
J.-J.
Muyembe-Tamfum
, and
P.
Formenty
, “
Human Ebola outbreak resulting from direct exposure to fruit bats in Luebo, Democratic Republic of Congo
,”
Vector-Borne Zoonotic Dis.
9
,
723
728
(
2009
).
21.
G.
Chowell
and
H.
Nishiura
, “
Transmission dynamics and control of Ebola virus disease (EVD): A review
,”
BMC Med.
12
,
196
(
2014
).
22.
Y.
Guimard
,
M. A.
Bwaka
,
R.
Colebunders
,
P.
Calain
,
M.
Massamba
 et al. “
Organization of patient care during the Ebola hemorrhagic fever epidemic in Kikwit, Democratic Republic of the Congo, 1995
,”
J. Infect. Dis.
179
,
S268
S273
(
1999
).
23.
G. D.
Maganga
,
J.
Kapetshi
,
N.
Berthet
,
B.
Kebela Ilunga
 et al., “
Ebola virus disease in the Democratic Republic of Congo
,”
N. Engl. J. Med.
371
,
2083
2091
(
2014
).
24.
D. G.
Bausch
and
L.
Schwarz
, “
Outbreak of Ebola virus disease in Guinea: Where ecology meets economy
,”
PLoS Neglected Trop. Dis.
8
(
7
),
e3056
(
2014
).
25.
Centers for Disease Control and Prevention
(
2014
), see http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/previous-case-counts.html for Ebola (Ebola Virus Disease).
26.
S.
Baize
,
D.
Pannetier
,
L.
Oestereich
,
T.
Rieger
,
L.
Koivogui
 et al., “
Emergence of Zaire Ebola virus disease in Guinea—Preliminary report
,”
N. Engl. J. Med.
371
,
1418
1425
(
2014
).
27.
World Health Organization
see http://apps.who.int/iris/bitstream/10665/131596/1/EbolaResponseRoadmap.pdf for Ebola Response Roadmap (
2014
).
28.
A.
Savitzky
and
M. J.
Golay
, “
Smoothing and differentiation of data by simplified least squares procedures
,”
Anal. Chem.
36
(
8
),
1627
1639
(
1964
).
29.
World Health Organization (WHO)
, see http://www.who.int/csr/don/20140808ebola/en/ for Global Alert and Response. Disease Outbreak News. Ebola Virus Disease, West Africa-Update,
2014
.
30.
World Health Organization (WHO)
, see https://storify.com/WHO/who-ebola-situation-report-29-august-2014 for WHO: Ebola Response Roadmap Situation Report 1,
2014
.
31.
World Health Organization (WHO)
, see http://www.who.int/csr/disease/ebola/situation-reports/archive/en/ for Ebola Situation Reports: Archive (last accessed 3 December
2014
).
32.
World Health Organization (WHO)
, see http://www.who.int/csr/disease/ebola/situation-reports/archive/en/ for Ebola Situation Reports: Archive (last accessed 7 January
2015
).
33.
World Health Organization (WHO)
, see http://www.who.int/csr/disease/ebola/situation-reports/archive/en/ for Ebola Situation Reports: Archive (last accessed 14 January
2015
).
34.
World Health Organization (WHO)
, see http://www.who.int/csr/disease/ebola/situation-reports/archive/en/ for Ebola Situation Reports: Archive (last accessed 28 January
2015
).
35.
J. P.
Crutchfield
and
B. S.
McNamara
, “
Equations of motion from a data series
,”
Complex Syst.
1
,
417
452
(
1987
).
36.
C.
Letellier
,
L. A.
Aguirre
, and
U. S.
Freitas
, “
Frequently asked questions about global modeling
,”
Chaos
19
,
023103
(
2009
).
37.
G.
Gouesbet
and
C.
Letellier
, “
Global vector field reconstruction by using a multivariate polynomial L2-approximation on nets
,”
Phys. Rev. E
49
(
6
),
4955
4972
(
1994
).
38.
S.
Mangiarotti
,
R.
Coudret
,
L.
Drapeau
, and
L.
Jarlan
, “
Polynomial search and global modeling: Two algorithms for modeling chaos
,”
Phys. Rev. E
86
(
4
),
046205
(
2012
).
39.
J. D.
Farmer
and
J. J.
Sidorowich
, “
Predicting chaotic time series
,”
Phys. Rev. Lett.
59
(
8
),
845
848
(
1987
).
40.
M.
Giona
,
F.
Lentini
, and
V.
Cimagalli
, “
Functional reconstruction and local prediction of chaotic time series
,”
Phys. Rev. A
44
(
6
),
3496
3502
(
1991
).
41.
L. A.
Aguirre
and
S. A.
Billings
, “
Dynamical effects of overparametrization in nonlinear models
,”
Physica D
80
,
26
40
(
1995
).
42.
G.
Gouesbet
and
J.
Maquet
, “
Construction of phenomenological models from numerical scalar time series
,”
Physica D
58
,
202
215
(
1992
).
43.
C.
Letellier
,
L.
Le Sceller
,
P.
Dutertre
,
G.
Gouesbet
,
Z.
Fei
, and
J.
Hudson
, “
Topological characterization and global vector field reconstruction of an experimental electrochemical system
,”
J. Phys. Chem.
99
(
18
),
7016
7027
(
1995
).
44.
C.
Letellier
,
L.
Le Sceller
,
G.
Gouesbet
,
F.
Lusseyran
,
A.
Kemoun
, and
B.
Izrar
, “
Recovering deterministic behavior from experimental time series in mixing reactor
,”
AIChE J.
43
(
9
),
2194
2202
(
1997
).
45.
E. N.
Lorenz
, “
Irregularity: A fundamental property of the atmosphere
,”
Tellus
36A
,
98
110
(
1984
).
46.
S.
Wieczorek
,
B.
Krauskopf
, and
D.
Lenstra
, “
A unifying view of bifurcations in a semiconductor laser subject to optical injection
,”
Opt. Commun.
172
,
279
295
(
1999
).
47.
K. E.
Chlouverakis
and
J. C.
Sprott
, “
A comparison of correlation and Lyapunov dimensions
,”
Physica D
200
,
156
164
(
2005
).
48.
S.
Mangiarotti
, “
Modélisation globale et caractérisation topologique de dynamiques environnementales: de l'analyse des enveloppes fluides et du couvert de surface de la Terre à la caractérisation topolodynamique du chaos
,” dissertation (Habilitation to Direct Researches,
Université de Toulouse
,
2014
).
49.
M. B.
Kennel
,
R.
Brown
, and
H. D. I.
Abarbanel
, “
Determining embedding dimension for phase-space reconstruction using a geometrical construction
,”
Phys. Rev. A
45
,
3403
3411
(
1992
).
50.
L.
Cao
, “
Practical method for determining the minimum embedding dimension of a scalar time series
,”
Physica D
110
,
43
50
(
1997
).
51.
R.
Gilmore
and
M.
Lefranc
,
The Topology of Chaos
(
Wiley
,
New York
) (
2002
).
52.
C.
Letellier
and
R.
Gilmore
, “
Introduction to topological analysis
,” in
Topology and Dynamics of Chaos: In Celebration of Robert Gilmore's 70th Birthday
, edited by
C.
Letellier
(
World Scientific Publishing Co. Pvt. Ltd.
,
2013
), pp.
1
19
.
53.
M.
Lefranc
, “
Alternative determinism principle for topological analysis of chaos
,”
Phys. Rev. E
74
,
035202
(
2006
).
54.
S.
Mangiarotti
and
C.
Letellier
, “
Topological analysis for designing a suspension of the Hénon map
,”
Phys. Lett. A
379
,
3069
3074
(
2015
).
55.
M.
Ding
,
C.
Grebogi
,
E.
Ott
,
T.
Sauer
, and
J. A.
Yorke
, “
Estimating correlation dimension from a chaotic time series: When does plateau onset occur?
,”
Physica D
69
,
404
424
(
1993
).
56.
C.
Letellier
,
E.
Ringuet
,
B.
Maheu
,
J.
Maquet
, and
G.
Gouesbet
, “
Global vector field reconstruction of chaotic attractors from one unstable periodic orbit
,”
Entropie
202/203
,
147
153
(
1997
).
57.
C.
Letellier
,
L. A.
Aguirre
, and
J.
Maquet
, “
Relation between observability and differential embeddings for nonlinear dynamics
,”
Phys. Rev. E
71
(
6
),
066213
(
2005
).
58.
E.
Bianco-Martinez
,
M. S.
Baptista
, and
C.
Letellier
, “
Symbolic computations of nonlinear observability
,”
Phys. Rev. E
91
,
062912
(
2015
).
59.
A.
Wolf
,
J. B.
Swift
,
H. L.
Swinney
, and
J. A.
Vastano
, “
Determining Lyapunov exponents from a time series
,”
Physica D
16
,
285
317
(
1985
).
60.
J. L.
Kaplan
and
J. A.
Yorke
, “
Chaotic Behavior of Multidimensional Difference Equations
,” in
Functional Differential Equations and Approximations of Fixed Points
, Lecture Notes in Mathematics Vol.
730
, edited by
H.-O.
Peitgen
and
H.-O.
Walter
(
Springer
,
Berlin
,
1979
).
61.
C.
Letellier
,
E.
Roulin
, and
O.
Rössler
, “
Inequivalent topologies of chaos in simple equations
,”
Chaos, Solitons, Fractals
28
,
337
360
(
2006
).
62.
M.
Choisy
,
J.-F.
Guégan
, and
P.
Rohani
, “
Dynamics of infectious diseases and pulse vaccination: Teasing apart the embedded resonances effects
,”
Physica D
223
(
1
),
26
35
(
2006
).
63.
D.
Fisman
,
E.
Khoo
, and
A.
Tuite
, “
Early epidemic dynamics of the West African 2014 Ebola Outbreak: Estimates derived with a simple two-parameter model
,”
PLoS Curr. Outbreaks
6
, Sep. 8 (
2014
).
64.
B.
Ivorra
,
D.
Ngom
, and
Á. M.
Ramos
, “
Be-CoDiS: A mathematical model to predict the risk of human diseases spread between countries. Validation and application to the 2014 Ebola Virus Disease epidemic
,”
Bull. Math. Biol.
77
(
9
),
1668
1704
(
2015
).
65.
A.
Du Toit
, “
Ebola virus in West Africa
,”
Nat. Rev. Microbiol.
12
(
5
),
312
(
2014
).
66.
K.
Schulz
,
C.
Calba
,
M.
Peyre
,
C.
Staubach
, and
F. J.
Conraths
, “
Hunters acceptability of the surveillance system and alternative surveillance strategies for classical swine fever in wild boar—A participatory approach
,”
BMC Veterinary Research
12
,
187
(
2016
).
67.
C.
Calba
,
F. L.
Goutard
,
L.
Hoinville
,
P.
Hendrikx
,
A.
Lindberg
,
C.
Saegerman
, and
M.
Peyre
, “
Surveillance systems evaluation: A systematic review of the existing approaches
,”
BMC Public Health
15
,
448
(
2015
).

Supplementary Material

You do not currently have access to this content.