Spatial self-organization emerges in distributed systems exhibiting local interactions when nonlinearities and the appropriate propagation of signals are at work. These kinds of phenomena can be modeled with different frameworks, typically cellular automata or reaction-diffusion systems. A different class of dynamical processes involves the correlated movement of agents over space, which can be mediated through chemotactic movement or minimization of cell-cell interaction energy. A classic example of the latter is given by the formation of spatially segregated assemblies when cells display differential adhesion. Here, we consider a new class of dynamical models, involving cell adhesion among two stochastically exchangeable cell states as a minimal model capable of exhibiting well-defined, ordered spatial patterns. Our results suggest that a whole space of pattern-forming rules is hosted by the combination of physical differential adhesion and the value of probabilities modulating cell phenotypic switching, showing that Turing-like patterns can be obtained without resorting to reaction-diffusion processes. If the model is expanded allowing cells to proliferate and die in an environment where diffusible nutrient and toxic waste are at play, different phases are observed, characterized by regularly spaced patterns. The analysis of the parameter space reveals that certain phases reach higher population levels than other modes of organization. A detailed exploration of the mean-field theory is also presented. Finally, we let populations of cells with different adhesion matrices compete for reproduction, showing that, in our model, structural organization can improve the fitness of a given cell population. The implications of these results for ecological and evolutionary models of pattern formation and the emergence of multicellularity are outlined.

1.
J. T.
Bonner
,
The Evolution of Complexity by Means of Natural Selection
(
Princeton University Press
,
Princeton
,
1998
).
2.
S. B.
Carroll
, “
Chance and necessity: The evolution of morphological complexity and diversity
,”
Nature
409
,
1102
1109
(
2001
).
3.
Evolutionary Transitions to Multicellular Life: Principles and Mechanisms
, edited by
A. M.
Nedelcu
and
I.
Ruiz-Trillo
(
Springer-Verlag
,
London
,
2015
).
4.
J. T.
Bonner
,
First Signals: The Evolution of Multicellular Development
(
Princeton University Press
,
Princeton
,
2001
).
5.
S.
Newman
and
W. D.
Comper
, “
Generic physical mechanisms of morphogenesis and pattern formation
,”
Development
110
,
1
18
(
1990
).
6.
C. A.
Waddington
,
Principles of Embriology
(
George Allen Ltd.
,
London
,
1956
).
7.
A.
Turing
, “
The chemical basis of morphogenesis
,”
Philos. Trans. R. Soc. London, Ser. B
237
,
37
72
(
1952
).
8.
N.
Rashevsky
, “
On periodicities in metabolizing systems
,”
Bull. Math. Biophys.
10
(
3
),
159
174
(
1948
).
9.
J. D.
Murray
, “
A pre-pattern formation mechanism for animal coat markings
,”
J. Theor. Biol.
88
(
1
),
161
199
(
1981
).
10.
R.
Solé
,
J.
Bascompte
, and
J.
Valls
, “
Stability and complexity of spatially extended two-species competition
,”
J. Theor. Biol.
159
,
469
480
(
1993
).
11.
J.
Bascompte
and
R.
Solé
, “
Rethinking complexity: Modelling spatiotemporal dynamics in ecology
,”
Trends Ecol. Evol.
10
,
361
366
(
1995
).
12.
G.
Theraulaz
,
E.
Bonabeau
,
S. C.
Nicolis
,
R.
Solé
 et al, “
Spatial patterns in ant colonies
,”
Proc. Natl. Acad. Sci. U.S.A.
99
,
9645
9649
(
2002
).
13.
A.
Jilkine
and
L.
Edelstein-Keshet
, “
A comparison of mathematical models for polarization of single eukaryotic cells in response to guided cues
,”
PLoS Comput. Biol.
7
,
e1001121
(
2011
).
14.
H.
Meinhardt
and
A.
Gierer
, “
Pattern formation by local self-activation and lateral inhibition
,”
Bioessays
22
(
8
),
753
760
(
2000
).
15.
B. C.
Goodwin
,
How the Leopard Got Its Spots
(
Princeton University Press
,
Princeton
,
1994
).
16.
A. J.
Koch
and
H.
Meinhardt
, “
Biological pattern formation: From basic mechanisms to complex structures
,”
Rev. Mod. Phys.
66
,
1481
1507
(
1994
).
17.
O.
Lejeune
and
M.
Tlidi
, “
A model for the explanation of vegetation stripes (tiger bush)
,”
J. Veg. Sci.
10
(
2
),
201
208
(
1999
).
18.
S.
Sick
,
S.
Reinker
,
J.
Timmer
, and
T.
Schlake
, “
WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism
,”
Science
314
(
5804
),
1447
1450
(
2006
).
19.
A. D.
Economou
,
A.
Ohazama
,
T.
Porntaveetus
,
P. T.
Sharpe
,
S.
Kondo
,
M. A.
Basson
, and
J. B.
Green
, “
Periodic stripe formation by a Turing mechanism operating at growth zones in the mammalian palate
,”
Nat. Genet.
44
(
3
),
348
351
(
2012
).
20.
J.
Raspopovic
,
L.
Marcon
,
L.
Russo
, and
J.
Sharpe
, “
Digit patterning is controlled by a Bmp-Sox9-Wnt Turing network modulated by morphogen gradients
,”
Science
345
(
6196
),
566
570
(
2014
).
21.
N.
Goel
,
R. D.
Campbell
,
R.
Gordon
,
R.
Rosen
,
H.
Martinez
, and
M.
Ycas
, “
Self-sorting of isotropic cells
,”
J. Theor. Biol.
28
(
3
),
423
468
(
1970
).
22.
S. A.
Newman
and
R.
Baht
, “
Dynamical patterning modules: Physico-genetic determinants of morphological development and evolution
,”
Phys. Biol.
5
,
015008
(
2008
).
23.
G.
Forgacs
and
S. A.
Newman
,
Biological Physics of the Developing Embryo
(
Cambridge University Press
,
Cambridge
,
2005
).
24.
G.
Forgacs
 et al, “
Viscoelastic properties of living embryonic tissues: A quantitative study
,”
Biophys. J.
74
(
5
),
2227
2234
(
1998
).
25.
R. A.
Foty
and
M. S.
Steinberg
, “
The differential adhesion hypothesis: A direct evaluation
,”
Dev. Biol.
278
(
1
),
255
263
(
2005
).
26.
S. A.
Newman
and
R.
Bhat
, “
Dynamical patterning modules: A “pattern language” for development and evolution of multicellular form
,”
Int. J. Dev. Biol.
53
(
5
),
693
(
2009
).
27.
M. S.
Steinberg
, “
Adhesion-guided multicellular assembly: A commentary upon the postulates, real and imagined, of the differential adhesion hypothesis, with special attention to computer simulations of cell sorting
,”
J. Theor. Biol.
55
(
2
),
431
443
(
1975
).
28.
F.
Graner
and
J. A.
Glazier
, “
Simulation of biological cell sorting using a two-dimensional extended Potts model
,”
Phys. Rev. Lett.
69
(
13
),
2013
(
1992
).
29.
P.
Hogeweg
, “
Evolving mechanisms of morphogenesis: On the interplay between differential adhesion and cell differentiation
,”
J. Theor. Biol.
203
,
317
333
(
2000
).
30.
B.
Hallet
, “
Playing Dr Jekyll and Mr Hyde: Combined mechanisms of phase variation in bacteria
,”
Curr. Opin. Microbiol.
4
(
5
),
570
581
(
2001
).
31.
N. Q.
Balaban
,
J.
Merrin
,
R.
Chait
,
L.
Kowalik
, and
S.
Leibler
, “
Bacterial persistence as a phenotypic switch
,”
Science
305
,
1622
1625
(
2004
).
32.
E.
Darmon
and
D. R. F.
Leach
, “
Bacterial genome instability
,”
Microbiol. Mol. Biol. Rev.
78
(
1
),
1
39
(
2014
).
33.
K.
Malarz
and
S.
Galam
, “
Square-lattice site percolation at increasing ranges of neighbor bonds
,”
Phys. Rev. E
71
,
016125
(
2005
).
34.
K.
Lewis
, “
Persister cells
,”
Annu. Rev. Microbiol.
64
,
357
372
(
2010
).
35.
A.
Babloyantz
,
Molecules, Dynamics, and Life: An Introduction to Self-Organization Of Matter
(
Wiley-Interscience
,
1986
).
36.
E. O.
Budrene
and
H. C.
Berg
, “
Complex patterns formed by motile cells of Escherichia coli
,”
Nature
349
,
630
633
(
1991
).
37.
M. R.
Myerscough
and
J. D.
Murray
, “
Analysis of propagating pattern in a chemotaxis system
,”
Bull. Math. Biol.
54
,
77
94
(
1992
).
38.
M. R.
Myerscough
,
P. K.
Maini
, and
K. J.
Painter
, “
Pattern formation in a generalized chemotactic model
,”
Bull. Math. Biol.
60
,
1
26
(
1998
).
39.
R. G.
Plaza
,
F.
Sanchez-Garduno
,
P.
Padilla
,
R. A.
Barrio
, and
P. K.
Maini
, “
The effect of growth and curvature on pattern formation
,”
J. Dyn. Differ. Equations
16
,
1093
(
2004
).
40.
M.
Matsushita
and
H.
Fujikawa
, “
Diffusion-limited growth in bacterial colony formation
,”
Phys. A
168
,
498
506
(
1990
).
41.
T.
Vicsek
, “
Pattern formation in diffusion-limited aggregation
,”
Phys. Rev. Lett.
53
,
2281
(
1984
).
42.
S.
Duran-Nebreda
and
R. V.
Solé
, “
Toward synthetic spatial patterns in engineered cell populations with chemotaxis
,”
ACS Synth. Biol.
5
,
654
661
(
2016
).
43.
S.
Duran-Nebreda
,
A.
Bonforti
,
R.
Montañez
,
S.
Valverde
, and
R.
Solé
, “
Emergence of proto-organisms from bistable stochastic differentiation and adhesion
,” 13.117,
20160108
(
2016
).

Supplementary Material

You do not currently have access to this content.