We introduce the concepts of perpetual points and periodic perpetual loci in discrete–time systems (maps). The occurrence and analysis of these points/loci are shown and basic examples are considered. We discuss the potential usage and properties of the introduced concepts. The comparison of perpetual points and loci in discrete–time and continuous–time systems is presented. The discussed methods can be widely applied in other dynamical systems.
References
1.
A.
Prasad
, Int. J. Bifurcation Chaos
25
(2
), 1530005
(2015
).2.
3.
D.
Dudkowski
, A.
Prasad
, and T.
Kapitaniak
, Phys. Lett. A
379
(40–41
), 2591
–2596
(2015
).4.
T.
Ueta
, D.
Ito
, and K.
Aihara
, Int. J. Bifurcation Chaos
25
(13
), 1550185
(2015
).5.
S.
Jafari
, F.
Nazarimehr
, J. C.
Sprott
, and S. M. R. H.
Golpayegani
, Int. J. Bifurcation Chaos
25
(13
), 1550182
(2015
).6.
D.
Dudkowski
, S.
Jafari
, T.
Kapitaniak
, N. V.
Kuznetsov
, G. A.
Leonov
, and A.
Prasad
, Phys. Rep.
637
, 1
(2016
).7.
G. A.
Leonov
, N. V.
Kuznetsov
, and T. N.
Mokaev
, Eur. Phys. J.: Spec. Top.
224
, 1421
–1458
(2015
).8.
R. M.
May
, Nature
261
, 459
–467
(1976
).9.
A. J. G.
Cairns
, Interest Rate Models - An Introduction
(Princeton University Press
, 2004
).10.
E.
Salinelli
and F.
Tomarelli
, Discrete Dynamical Models
(Springer
, 2014
).11.
F. R.
Adler
, Modeling the Dynamics of Life: Calculus and Probability for Life Scientists
(Cengage Learning
, 2012
).12.
Y.
Isagi
, K.
Sugimura
, A.
Sumida
, and H.
Ito
, J. Theor. Biol.
187
, 231
–239
(1997
).13.
A.
Prasad
and K.
Sakai
, Chaos
25
, 123102
(2015
).14.
L.
Zhang
, IEEE Trans. Circuits Syst. I
58
(5
), 1109
–1118
(2011
).15.
K.
You
, IEEE Trans. Autom. Control
56
(10
), 2262
–2275
(2011
).16.
F.
Amato
, M.
Ariola
, and C.
Cosentino
, Automatica
46
(5
), 919
–924
(2010
).17.
G. A.
Leonov
, N. V.
Kuznetsov
, and V. I.
Vagaitsev
, Phys. Lett. A
375
(23
), 2230
–2233
(2011
).18.
H.
Zhao
, Y.
Lin
, and Y.
Dai
, Int. J. Bifurcation Chaos
24
(6
), 1450080
(2014
).19.
A. P.
Kuznetsov
, S. P.
Kuznetsov
, E.
Mosekilde
, and N. V.
Stankevich
, J. Phys. A: Math. Theor.
48
(12
), 125101
(2015
).20.
V.-T.
Pham
, S.
Vaidyanathan
, C. K.
Volos
, and S.
Jafari
, Eur. Phys. J.: Spec. Top.
224
, 1507
–1517
(2015
).21.
U.
Chaudhuri
and A.
Prasad
, Phys. Lett. A
378
(9
), 713
–718
(2014
).22.
G. A.
Leonov
and N. V.
Kuznetsov
, Int. J. Bifurcation Chaos
23
(1
), 1330002
(2013
).23.
G. A.
Leonov
, N. V.
Kuznetsov
, O. A.
Kuznetsova
, S. M.
Seledzhi
, and V. I.
Vagaitsev
, Trans. Syst. Control
2
, 6
(2011
).24.
R.
Alli-Oke
, J.
Carrasco
, W.
Heath
, and A.
Lanzon
, “A robust Kalman conjecture for first-order plants
,” in Proceedings of the IEEE Control and Decision Conference
(2012
).25.
W. P.
Heath
, J.
Carrasco
, and M.
de la Sen
, Automatica
60
, 140
–144
(2015
).26.
S.
Jafari
, V.-T.
Pham
, S.
Golpayegani
, M.
Moghtadaei
, and S. T.
Kingni
, “The relationship between chaotic maps and some chaotic systems with hidden attractors
,” Int. J. Bifurcation Chaos Nonlinear Dyn.
85
, 2719
–2727
(2016
); available at https://www.researchgate.net/publication/281904636.27.
H.
Jiang
, Y.
Liu
, Z.
Wei
, and L.
Zhang
, “Hidden chaotic attractors in a class of two-dimensional maps
,” Nonlinear Dyn.
28.
M.
Ausloos
and M.
Dirickx
, The Logistic Map and the Route to Chaos
(Springer
, 2006
).29.
L.
Kocarev
and G.
Jakimoski
, Phys. Lett. A
289
(4–5
), 199
–206
(2001
).30.
N. K.
Pareek
, V.
Patidar
, and K. K.
Sud
, Image Vision Comput.
24
(9
), 926
–934
(2006
).31.
Y.
Saiki
and M.
Yamada
, Nonlinear Process. Geophys.
15
, 675
–680
(2008
).32.
Y.
Maistrenko
and T.
Kapitaniak
, Phys. Rev. E
54
, 3285
(1996
).33.
D.
Dudkowski
, Y.
Maistrenko
, and T.
Kapitaniak
, Phys. Rev. E
90
, 032920
(2014
).34.
T.
Yoshida
, H.
Mori
, and H.
Shigematsu
, J. Stat. Phys.
31
(2
), 279
–308
(1983
).35.
P.
Grassberger
, H.
Kantz
, and U.
Moenig
, J. Phys. A: Math. Gen.
22
, 5217
–5230
(1989
).36.
G.
D'Alessandro
, P.
Grassberger
, S.
Isola
, and A.
Politi
, J. Phys. A: Math. Gen.
23
, 5285
–5294
(1990
).37.
O.
Biham
and W.
Wenzel
, Phys. Rev. A
42
(8
), 4639
–4646
(1990
).38.
P.
Kuzma
, “Dynamics of the coupled Henon maps
,” M.S. thesis (Technical University of Lodz
, 2012
).39.
40.
I.
Kovacic
and M. J.
Brennan
, The Duffing Equation: Nonlinear Oscillators and their Behaviour
(Wiley
, 2011
).41.
U.
Parlitz
and W.
Lauterborn
, Phys. Lett. A
107
(8
), 351
–355
(1985
).42.
P. G.
Reinhall
, T. K.
Caughey
, and D. W.
Storti
, J. Appl. Mech.
56
(1
), 162
–167
(1989
).43.
O.
Junge
, “Uncertainty in the dynamics of conservative maps
,” in 43rd IEEE Conference on Decision and Control
(2004
).44.
I. M. T.
AL-Shara'a
and M. A. A.-K.
AL-Yaseen
, Math. Theory Model.
3
(7
), 41
–45
(2013
).45.
See http://www.cmp.caltech.edu/∼mcc/Chaos_Course/Lesson5/Maps2D.pdf for description of the Duffing map.
46.
G.
Hall
and J. M.
Watt
, Modern Numerical Methods for Ordinary Differential Equations
(Clarendon Press
, 1976
).47.
C. W.
Gear
and L. R.
Petzold
, SIAM J. Numer. Anal.
21
(4
), 716
–728
(1984
).48.
E.
Hairer
, C.
Lubich
, and G.
Wanner
, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations
(Springer
, 2010
).49.
J. C.
Butcher
, The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods
(Wiley-Interscience
, New York
, 1987
).© 2016 Author(s).
2016
Author(s)
You do not currently have access to this content.