We introduce the concepts of perpetual points and periodic perpetual loci in discrete–time systems (maps). The occurrence and analysis of these points/loci are shown and basic examples are considered. We discuss the potential usage and properties of the introduced concepts. The comparison of perpetual points and loci in discrete–time and continuous–time systems is presented. The discussed methods can be widely applied in other dynamical systems.

1.
A.
Prasad
,
Int. J. Bifurcation Chaos
25
(
2
),
1530005
(
2015
).
2.
A.
Prasad
,
Int. J. Nonlinear Sci.
21
,
60
64
(
2016
).
3.
D.
Dudkowski
,
A.
Prasad
, and
T.
Kapitaniak
,
Phys. Lett. A
379
(
40–41
),
2591
2596
(
2015
).
4.
T.
Ueta
,
D.
Ito
, and
K.
Aihara
,
Int. J. Bifurcation Chaos
25
(
13
),
1550185
(
2015
).
5.
S.
Jafari
,
F.
Nazarimehr
,
J. C.
Sprott
, and
S. M. R. H.
Golpayegani
,
Int. J. Bifurcation Chaos
25
(
13
),
1550182
(
2015
).
6.
D.
Dudkowski
,
S.
Jafari
,
T.
Kapitaniak
,
N. V.
Kuznetsov
,
G. A.
Leonov
, and
A.
Prasad
,
Phys. Rep.
637
,
1
(
2016
).
7.
G. A.
Leonov
,
N. V.
Kuznetsov
, and
T. N.
Mokaev
,
Eur. Phys. J.: Spec. Top.
224
,
1421
1458
(
2015
).
8.
9.
A. J. G.
Cairns
,
Interest Rate Models - An Introduction
(
Princeton University Press
,
2004
).
10.
E.
Salinelli
and
F.
Tomarelli
,
Discrete Dynamical Models
(
Springer
,
2014
).
11.
F. R.
Adler
,
Modeling the Dynamics of Life: Calculus and Probability for Life Scientists
(
Cengage Learning
,
2012
).
12.
Y.
Isagi
,
K.
Sugimura
,
A.
Sumida
, and
H.
Ito
,
J. Theor. Biol.
187
,
231
239
(
1997
).
13.
A.
Prasad
and
K.
Sakai
,
Chaos
25
,
123102
(
2015
).
14.
L.
Zhang
,
IEEE Trans. Circuits Syst. I
58
(
5
),
1109
1118
(
2011
).
15.
K.
You
,
IEEE Trans. Autom. Control
56
(
10
),
2262
2275
(
2011
).
16.
F.
Amato
,
M.
Ariola
, and
C.
Cosentino
,
Automatica
46
(
5
),
919
924
(
2010
).
17.
G. A.
Leonov
,
N. V.
Kuznetsov
, and
V. I.
Vagaitsev
,
Phys. Lett. A
375
(
23
),
2230
2233
(
2011
).
18.
H.
Zhao
,
Y.
Lin
, and
Y.
Dai
,
Int. J. Bifurcation Chaos
24
(
6
),
1450080
(
2014
).
19.
A. P.
Kuznetsov
,
S. P.
Kuznetsov
,
E.
Mosekilde
, and
N. V.
Stankevich
,
J. Phys. A: Math. Theor.
48
(
12
),
125101
(
2015
).
20.
V.-T.
Pham
,
S.
Vaidyanathan
,
C. K.
Volos
, and
S.
Jafari
,
Eur. Phys. J.: Spec. Top.
224
,
1507
1517
(
2015
).
21.
U.
Chaudhuri
and
A.
Prasad
,
Phys. Lett. A
378
(
9
),
713
718
(
2014
).
22.
G. A.
Leonov
and
N. V.
Kuznetsov
,
Int. J. Bifurcation Chaos
23
(
1
),
1330002
(
2013
).
23.
G. A.
Leonov
,
N. V.
Kuznetsov
,
O. A.
Kuznetsova
,
S. M.
Seledzhi
, and
V. I.
Vagaitsev
,
Trans. Syst. Control
2
,
6
(
2011
).
24.
R.
Alli-Oke
,
J.
Carrasco
,
W.
Heath
, and
A.
Lanzon
, “
A robust Kalman conjecture for first-order plants
,” in
Proceedings of the IEEE Control and Decision Conference
(
2012
).
25.
W. P.
Heath
,
J.
Carrasco
, and
M.
de la Sen
,
Automatica
60
,
140
144
(
2015
).
26.
S.
Jafari
,
V.-T.
Pham
,
S.
Golpayegani
,
M.
Moghtadaei
, and
S. T.
Kingni
, “
The relationship between chaotic maps and some chaotic systems with hidden attractors
,”
Int. J. Bifurcation Chaos Nonlinear Dyn.
85
,
2719
2727
(
2016
); available at https://www.researchgate.net/publication/281904636.
27.
H.
Jiang
,
Y.
Liu
,
Z.
Wei
, and
L.
Zhang
, “
Hidden chaotic attractors in a class of two-dimensional maps
,”
Nonlinear Dyn.
28.
M.
Ausloos
and
M.
Dirickx
,
The Logistic Map and the Route to Chaos
(
Springer
,
2006
).
29.
L.
Kocarev
and
G.
Jakimoski
,
Phys. Lett. A
289
(
4–5
),
199
206
(
2001
).
30.
N. K.
Pareek
,
V.
Patidar
, and
K. K.
Sud
,
Image Vision Comput.
24
(
9
),
926
934
(
2006
).
31.
Y.
Saiki
and
M.
Yamada
,
Nonlinear Process. Geophys.
15
,
675
680
(
2008
).
32.
Y.
Maistrenko
and
T.
Kapitaniak
,
Phys. Rev. E
54
,
3285
(
1996
).
33.
D.
Dudkowski
,
Y.
Maistrenko
, and
T.
Kapitaniak
,
Phys. Rev. E
90
,
032920
(
2014
).
34.
T.
Yoshida
,
H.
Mori
, and
H.
Shigematsu
,
J. Stat. Phys.
31
(
2
),
279
308
(
1983
).
35.
P.
Grassberger
,
H.
Kantz
, and
U.
Moenig
,
J. Phys. A: Math. Gen.
22
,
5217
5230
(
1989
).
36.
G.
D'Alessandro
,
P.
Grassberger
,
S.
Isola
, and
A.
Politi
,
J. Phys. A: Math. Gen.
23
,
5285
5294
(
1990
).
37.
O.
Biham
and
W.
Wenzel
,
Phys. Rev. A
42
(
8
),
4639
4646
(
1990
).
38.
P.
Kuzma
, “
Dynamics of the coupled Henon maps
,” M.S. thesis (
Technical University of Lodz
,
2012
).
39.
E.
Ott
,
Chaos in Dynamical Systems
(
Cambridge University Press
,
1993
).
40.
I.
Kovacic
and
M. J.
Brennan
,
The Duffing Equation: Nonlinear Oscillators and their Behaviour
(
Wiley
,
2011
).
41.
U.
Parlitz
and
W.
Lauterborn
,
Phys. Lett. A
107
(
8
),
351
355
(
1985
).
42.
P. G.
Reinhall
,
T. K.
Caughey
, and
D. W.
Storti
,
J. Appl. Mech.
56
(
1
),
162
167
(
1989
).
43.
O.
Junge
, “
Uncertainty in the dynamics of conservative maps
,” in
43rd IEEE Conference on Decision and Control
(
2004
).
44.
I. M. T.
AL-Shara'a
and
M. A. A.-K.
AL-Yaseen
,
Math. Theory Model.
3
(
7
),
41
45
(
2013
).
46.
G.
Hall
and
J. M.
Watt
,
Modern Numerical Methods for Ordinary Differential Equations
(
Clarendon Press
,
1976
).
47.
C. W.
Gear
and
L. R.
Petzold
,
SIAM J. Numer. Anal.
21
(
4
),
716
728
(
1984
).
48.
E.
Hairer
,
C.
Lubich
, and
G.
Wanner
,
Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations
(
Springer
,
2010
).
49.
J. C.
Butcher
,
The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods
(
Wiley-Interscience
,
New York
,
1987
).
You do not currently have access to this content.