We intend to show that transient chaos is a very appealing, but still not widely appreciated, subfield of nonlinear dynamics. Besides flashing its basic properties and giving a brief overview of the many applications, a few recent transient-chaos-related subjects are introduced in some detail. These include the dynamics of decision making, dispersion, and sedimentation of volcanic ash, doubly transient chaos of undriven autonomous mechanical systems, and a dynamical systems approach to energy absorption or explosion.

1.
T.
Tél
, in
Directions in Chaos
, edited by
B.-l.
Hao
(
World Scientific
,
Singapore
,
1990
), Vol. 3, pp.
149
221
;
T.
Tél
, in
STATPHYS 19: The Proceedings of the 19th IUPAP Conference on Statistical Physics
(
World Scientific
,
Singapore
,
1996
), pp.
346
362
.
2.
Y.-C.
Lai
and
T.
Tél
,
Transient Chaos, Complex Dynamics on Finite-Time Scales
(
Springer
,
New York
,
2011
).
4.
H.
Kantz
and
P.
Grassberger
,
Physica D
17
,
75
(
1985
).
5.
C.
Grebogi
,
E.
Ott
, and
J.
Yorke
,
Phys. Rev. Lett.
48
,
1507
(
1982
);
C.
Grebogi
,
E.
Ott
, and
J.
Yorke
,
Physica D
7
,
181
(
1983
).
6.
C.
Grebogi
,
E.
Ott
, and
J.
Yorke
,
Phys. Rev. Lett.
50
,
935
(
1983
).
7.
C.
Jung
,
T.
Tél
, and
E.
Ziemniak
,
Chaos
3
,
555
(
1993
).
9.
J. C.
Sommerer
,
H.
Ku
, and
H.
Gilreath
,
Phys. Rev. Lett
77
,
5055
(
1996
).
10.
M.
Van Dyke
,
An Album of Fluid Motion
(
Parabolic Press
,
Stanford
,
1988
).
11.
F.
Ladrappier
and
L.-S.
Young
,
Commun. Math. Phys.
117
,
529
(
1988
).
12.
J.
Jacobs
,
E.
Ott
,
T.
Antonsen
, and
J.
Yorke
,
Physica D
110
,
1
(
1997
).
13.
Z.
Neufeld
and
T.
Tél
,
Phys. Rev. E
57
,
2832
(
1998
).
14.
I.
Scheuring
,
T.
Czárán
,
P.
Szabó
,
G.
Károlyi
, and
Z.
Toroczkai
,
Origins Life Evol. Biosphere
33
,
319
(
2002
).
15.
Z.
Neufeld
and
E.
Hernández-Garcia
,
Chemical and Biological Processes in Fluid Flows
(
Imperial College Press
,
London
,
2010
).
16.
S. E.
Newhouse
and
T.
Pignataro
,
J. Stat. Phys.
72
,
1331
(
1993
).
17.
B. R.
Hunt
and
E.
Ott
,
Chaos
25
,
097618
(
2015
).
18.
G.
Haller
and
G.
Yuan
,
Physica D
147
,
352
(
2000
).
19.
G.
Haller
,
Annu. Rev. Fluid Mech.
47
,
137
(
2015
).
20.
M.
Sandulescu
,
C. E.
López
,
E.
Hernández-Garcia
, and
U.
Feudel
,
Ecol. Complexity
5
,
228
(
2008
).
21.
C. S.
Harrison
,
D. A.
Siegel
, and
S.
Mitarai
,
Mar. Ecol. Prog. Ser.
472
,
27
(
2013
).
22.
E. T.
Kai
 et al,
Proc. Natl. Acad. Sci.
106
,
8245
(
2009
).
23.
E.
Ott
,
Chaos in Dynamical Systems
, 1st ed. (
Cambridge University Press
,
Cambridge
,
1993
);
E.
Ott
,
Chaos in Dynamical Systems
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
2002
).
24.
E.
Ott
,
C.
Grebogi
, and
J.
Yorke
,
Phys. Rev. Lett.
64
,
1196
(
1990
).
25.
P.
Gaspard
,
Chaos, Scattering and Statistical Mechanics
(
Cambridge University Press
,
Cambridge
,
1998
).
26.
M.
Iansity
,
Q.
Hu
,
R. M.
Westervelt
, and
M.
Tinkham
,
Phys. Rev. Lett.
55
,
746
(
1985
).
27.
Y.-C.
Lai
,
Z.
Liu
,
L.
Billings
, and
I. B.
Schwartz
,
Phys. Rev. E
67
,
026210
(
2003
).
29.
R.
Klages
,
Macroscopic Chaos, Fractals and Transport in Nonequilibrium Statistical Mechanics
(
World Scientific
,
Singapore
,
2007
).
30.
S.
Scott
,
B.
Peng
,
A.
Tomlin
, and
K.
Showalter
,
J. Chem. Phys.
94
,
1134
(
1991
).
31.
J.
Wang
,
P. G.
Sorensen
, and
F.
Hynne
,
J. Phys. Chem.
98
,
725
(
1994
).
32.
Y.-H.
Do
and
Y.-C.
Lai
,
Phys. Rev. Lett.
91
,
224101
(
2003
).
33.
J. P.
Crutchfield
and
K.
Kaneko
,
Phys. Rev. Lett.
60
,
2715
(
1988
).
34.
B.
Hof
,
A.
de Lozar
,
D. J.
Kuik
, and
J.
Westerweel
,
Phys. Rev. Lett.
101
,
214501
(
2008
).
35.
M. R.
Garey
and
D. S.
Johnson
,
Computers and Intractability: A Guide to the Theory of NP-Completeness
(
W. H. Freeman
,
New York
,
1990
).
36.
M.
Ercsey-Ravasz
and
Z.
Toroczkai
,
Nat. Phys.
7
,
966
(
2011
).
37.
R.
Sumi
,
B.
Molnár
, and
M.
Ercsey-Ravasz
,
Eur. Phys. Lett.
106
,
40002
(
2014
).
38.
M.
Ercsey-Ravasz
and
Z.
Toroczkai
,
Sci. Rep.
2
,
725
(
2012
).
39.
T.
Haszpra
and
T.
Tél
,
Nonlinear Processes Geophys.
20
,
867
(
2013
).
40.
T.
Haszpra
and
A.
Horányi
,
Idojaras: Q. J. Hung. Met. Serv.
118
,
335
(
2014
).
41.
D. P.
Dee
 et al,
Q. J. R. Meteorol. Soc.
137
,
553
(
2011
).
42.
T.
Haszpra
and
T.
Tél
,
J. Atmos. Sci.
70
,
4030
(
2013
).
43.
T.
Tél
and
M.
Gruiz
,
Chaotic Dynamics
(
Cambridge University Press
,
Cambridge
,
2006
).
44.
A. E.
Motter
,
M.
Gruiz
,
G.
Károlyi
, and
T.
Tél
,
Phys. Rev. Lett.
111
,
194101
(
2013
).
45.
E. G.
Altmann
,
J. S. E.
Portela
, and
T.
Tél
,
Phys. Rev. Lett.
111
,
144101
(
2013
).
46.
G.
Pianigiani
and
J. A.
Yorke
,
Trans. Am. Math. Soc.
252
,
351
(
1979
).
47.
E. G.
Altmann
,
J. S. E.
Portela
, and
T.
Tél
,
Europhys. Lett.
109
,
30003
(
2015
).
48.
E. G.
Altmann
,
J. S. E.
Portela
, and
T.
Tél
,
Rev. Mod. Phys.
85
,
869
(
2013
).
49.
G.
Froyland
,
R. M.
Stuart
, and
E.
van Sebille
,
Chaos
24
,
033126
(
2014
).
50.
H.-L.
Zou
,
M.-L.
Li
,
C. H.
Lai
, and
Y.-C.
Lai
,
Phys. Rev. E
86
,
066214
(
2012
).
51.
R.
Karnatak
,
G.
Ansmann
,
U.
Feudel
, and
K.
Lehnertz
,
Phys. Rev. E
90
,
022917
(
2014
).
52.
M.
Wolfrum
and
O. E.
Omelchenko
,
Phys. Rev. E
84
,
015201(R)
(
2011
).
53.
D. P.
Rosin
,
D.
Rontani
,
N. D.
Haynes
,
E.
Schöll
, and
D. J.
Gauthier
,
Phys. Rev. E
90
,
030902(R)
(
2014
).
54.
A.
Daitche
and
T.
Tél
,
New J. Phys.
16
,
073008
(
2014
).
55.
T.
Kreilos
,
B.
Eckhardt
, and
T. M.
Schneider
,
Phys. Rev. Lett.
112
,
044503
(
2014
).
56.
X.
Ni
and
Y.-C.
Lai
,
Chaos
21
,
033116
(
2011
).
57.
T.
Kovács
,
Gy.
Bene
, and
T.
Tél
,
Mon. Not. R. Astron. Soc.
414
,
2275
(
2011
).
58.
T.
Kovács
and
Zs.
Regály
,
Astrophys. J. Lett.
798
,
L9
(
2015
).
59.
A. B.
Schelin
,
Gy.
Károlyi
,
A. P. S.
de Moura
,
N.
Booth
, and
C.
Grebogi
,
Comput. Biol. Med.
42
,
276
(
2012
).
60.
G.
Závodszky
,
Gy.
Károlyi
, and
Gy.
Paál
,
J. Theor. Biol.
368
,
95
(
2015
).
61.
F.
Gonzales
and
C.
Jung
,
J. Phys. A
45
,
265102
(
2012
).
62.
F.
Gonzales
,
G.
Drótos
, and
C.
Jung
,
J. Phys. A
47
,
045101
(
2014
).
63.
G.
Drótos
,
F.
Gonzales Montoya
,
C.
Jung
, and
T.
Tél
,
Phys. Rev. E
90
,
022906
(
2014
).
64.
E. E.
Zotos
,
Nonlinear Dyn.
76
,
1301
(
2014
).
65.
P. J.
Romeiras
,
C.
Grebogi
, and
E.
Ott
,
Phys. Rev. A
41
,
784
(
1990
).
66.
T.
Bódai
,
E. G.
Altmann
, and
A.
Endler
,
Phys. Rev. E
87
,
042902
(
2013
).
67.
M.
Ghil
,
M. D.
Chekroun
, and
E.
Simonnet
,
Physica D
237
,
2111
(
2008
).
68.
T.
Bódai
and
T.
Tél
,
Chaos
22
,
023110
(
2012
).
69.
G.
Drótos
,
T.
Bódai
, and
T.
Tél
,
J. Clim.
28
,
3275
(
2015
).
70.
J. M.
Pedrosa
,
G. G.
Carlo
,
D. A.
Wisniacki
, and
L.
Ermann
,
Phys. Rev. E
79
,
016215
(
2009
).
71.
S.
Nonnenmacher
,
Nonlinearity
24
,
R123
(
2011
).
73.
R.
Yang
,
L.
Huang
,
Y.-C.
Lai
,
C.
Grebogi
, and
L. M.
Pecora
,
Chaos
23
,
013125
(
2013
).
74.
G.-L.
Wang
,
L.
Ying
,
Y.-C.
Lai
, and
C.
Grebogi
,
Phys. Rev. E
87
,
052908
(
2013
).
75.
M.
Schonwetter
and
E. G.
Altmann
,
Phys. Rev. E
91
,
012919
(
2015
).
76.
H.
Cai
and
J.
Wiersig
,
Rev. Mod. Phys.
87
,
61
(
2015
).
77.
Such sets of noninvertible systems are called chaotic repellers.
78.
There might be a deviation from (1) for very large times, too, due to, e.g., particles sticking to the obstacle's surface.
79.

For simplicity, chaotic diffusion and precipitation was not taken into account in the simulation shown in Fig. 6; the inclusion of these effects would not change the picture qualitatively.39

80.

When map f is open, one can define two escape rates: One for the energy, another one (the usual escape rate) for particles.

81.

For the other partial dimension, one also needs to know the negative Lyapunov exponent λ¯, and finds it as D1(2)=D1(1)λ¯/λ¯. The information dimension D(1) of the saddle and D1c of the c-measure are then D(1)=D1(1)+D1(2) and D1c=1+D1(2), respectively.

You do not currently have access to this content.