In this paper, we discuss recent progress in research of ensembles of mean field coupled oscillators. Without an ambition to present a comprehensive review, we outline most interesting from our viewpoint results and surprises, as well as interrelations between different approaches.

1.
E.
Kaempfer
,
The History of Japan (With a Description of the Kingdom of Siam)
(
Sloane
,
London
,
1727
) posthumous translation; or reprint by McLehose, Glasgow, 1906.
2.
See http://1000fireflies.net for description of interacting bike safety lights and their synchronization when up to 250 cyclists ride together, as part of Chicago Artists Month.
3.
N.
Wiener
,
Cybernetics or Control and Communication in the Animal and the Machine
(
MIT Press
,
Cambridge, MA
,
1965
).
4.
S. H.
Strogatz
, “
Norbert Wiener's brain waves
,” in
Frontiers in Mathematical Biology
, Lecture Notes in Biomathematics, Vol.
100
, edited by
S. A.
Levin
(
Springer-Verlag
,
Berlin-Heidelberg
,
1994
), pp.
122
138
.
5.
I.
Kiss
,
Y.
Zhai
, and
J.
Hudson
, “
Emerging coherence in a population of chemical oscillators
,”
Science
296
,
1676
1678
(
2002
).
6.
Y.
Zhai
,
I. Z.
Kiss
, and
J. L.
Hudson
, “
Control of complex dynamics with time-delayed feedback in populations of chemical oscillators: Desynchronization and clustering
,”
Ind. Eng. Chem. Res.
47
,
3502
(
2008
).
7.
A. A.
Temirbayev
,
Z. Z.
Zhanabaev
,
S. B.
Tarasov
,
V. I.
Ponomarenko
, and
M.
Rosenblum
, “
Experiments on oscillator ensembles with global nonlinear coupling
,”
Phys. Rev. E
85
,
015204(R)
(
2012
);
A. A.
Temirbayev
,
Y. D.
Nalibayev
,
Z. Z.
Zhanabaev
,
V. I.
Ponomarenko
, and
M.
Rosenblum
, “
Autonomous and forced dynamics of oscillator ensembles with global nonlinear coupling: An experimental study
,”
Phys. Rev. E
87
,
062917
(
2013
).
8.
E. A.
Martens
,
S.
Thutupalli
,
A.
Fourriere
, and
O.
Hallatschek
, “
Chimera states in mechanical oscillator networks
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
10563
10567
(
2013
).
9.
S.
Benz
and
C.
Burroughs
, “
Coherent emission from two-dimensional Josephson junction arrays
,”
Appl. Phys. Lett.
58
,
2162
2164
(
1991
).
10.
K.
Hirosawa
,
S.
Kittaka
,
Y.
Oishi
,
F.
Kannari
, and
T.
Yanagisawa
, “
Phase locking in a nd:yvo4 waveguide laser array using talbot cavity
,”
Opt. Express
21
,
24952
24961
(
2013
).
11.
P.
Richard
,
B. M.
Bakker
,
B.
Teusink
,
K. V.
Dam
, and
H. V.
Westerhoff
, “
Acetaldehyde mediates the synchronization of sustained glycolytic oscillations in population of yeast cells
,”
Eur. J. Biochem.
235
,
238
241
(
1996
).
12.
A.
Prindle
,
P.
Samayoa
,
I.
Razinkov
,
T.
Danino
,
L. S.
Tsimring
, and
J.
Hasty
, “
A sensing array of radically coupled genetic “biopixels”
,”
Nature
481
,
39
44
(
2012
).
13.
P.
Dallard
,
T.
Fitzpatrick
,
A.
Flint
,
A.
Low
,
R. R.
Smith
,
M.
Willford
, and
M.
Roche
, “
London millennium bridge: Pedestrian-induced lateral vibration
,”
J. Bridge Eng.
6
,
412
417
(
2001
).
14.
Z.
Néda
,
E.
Ravasz
,
Y.
Brechet
,
T.
Vicsek
, and
A.-L.
Barabási
, “
Tumultuous applause can transform itself into waves of synchronized clapping
,”
Nature
403
,
849
850
(
2000
);
[PubMed]
Z.
Néda
,
E.
Ravasz
,
Y.
Brechet
,
T.
Vicsek
, and
A.-L.
Barabási
, “
Physics of the rhythmic applause
,”
Phys. Rev. E
61
,
6987
6992
(
2000
).
15.
S. M.
Henson
,
J. L.
Hayward
,
J. M.
Cushing
, and
J. C.
Galusha
, “
Socially induced synchronization of every-other-day egg laying in a seabird colony
,”
The Auk
127
,
571
580
(
2010
).
16.
M. K.
McClintock
, “
Menstrual synchrony and suppression
,”
Nature
229
,
244
245
(
1971
);
[PubMed]
A.
Weller
and
L.
Weller
, “
Menstrual synchrony under optimal conditions: Bedouin families
,”
J. Comp. Psychol.
111
,
143
151
(
1997
);
[PubMed]
M. A.
Arden
and
L.
Dye
, “
The assessment of menstrual synchrony: Comment on Weller and Weller (1997)
,”
J. Comp. Psychol.
112
,
323
324
(
1998
).
[PubMed]
17.
A.
Ziomkiewicz
, “
Menstrual synchrony: Fact or artifact?
,”
Human Nat.
17
,
419
432
(
2006
).
18.
A. T.
Winfree
, “
Biological rhythms and the behavior of populations of coupled oscillators
,”
J. Theor. Biol.
16
,
15
42
(
1967
);
[PubMed]
A. T.
Winfree
,
The Geometry of Biological Time
(
Springer
,
Berlin
,
1980
).
19.
C. C.
Canavier
, “
Phase response curve
,”
Scholarpedia
1
(
12
),
1332
(
2006
).
20.
J.
Ariaratnam
and
S.
Strogatz
, “
Phase diagram for the winfree model of coupled nonlinear oscillators
,”
Phys. Rev. Lett.
86
,
4278
4281
(
2001
);
[PubMed]
D.
Quinn
,
R.
Rand
, and
S.
Strogatz
, “
Singular unlocking transition in the winfree model of coupled oscillators
,”
Phys. Rev. E
75
,
036218
(
2007
);
D.
Pazó
and
E.
Montbrió
, “
Low-dimensional dynamics of populations of pulse-coupled oscillators
,”
Phys. Rev. X
4
,
011009
(
2014
).
21.
F.
Giannuzzi
,
D.
Marinazzo
,
G.
Nardulli
,
M.
Pellicoro
, and
S.
Stramaglia
, “
Phase diagram of a generalized Winfree model
,”
Phys. Rev. E
75
,
051104
(
2007
).
22.
Y.
Kuramoto
, “
Self-entrainment of a population of coupled nonlinear oscillators
,” in
International Symposium on Mathematical Problems in Theoretical Physics
, Lecture Notes Physics, Vol.
39
, edited by
H.
Araki
(
Springer
,
New York
,
1975
), p.
420
;
Y.
Kuramoto
,
Chemical Oscillations, Waves and Turbulence
(
Springer
,
Berlin
,
1984
).
23.
D.
Pazó
, “
Thermodynamic limit of the first-order phase transition in the Kuramoto model
,”
Phys. Rev. E
72
,
046211
(
2005
).
24.
H.
Sakaguchi
and
Y.
Kuramoto
, “
A soluble active rotator model showing phase transition via mutual entrainment
,”
Prog. Theor. Phys.
76
,
576
581
(
1986
).
25.
S.
Watanabe
and
S. H.
Strogatz
, “
Integrability of a globally coupled oscillator array
,”
Phys. Rev. Lett.
70
,
2391
2394
(
1993
);
[PubMed]
S.
Watanabe
and
S. H.
Strogatz
, “
Constants of motion for superconducting Josephson arrays
,”
Physica D
74
,
197
253
(
1994
).
26.
A.
Pikovsky
and
M.
Rosenblum
, “
Partially integrable dynamics of hierarchical populations of coupled oscillators
,”
Phys. Rev. Lett.
101
,
264103
(
2008
);
[PubMed]
A.
Pikovsky
and
M.
Rosenblum
, “
Dynamics of heterogeneous oscillator ensembles in terms of collective variables
,”
Physica D
240
,
872
881
(
2011
).
27.
S. A.
Marvel
,
R. E.
Mirollo
, and
S. H.
Strogatz
, “
Phase oscillators with global sinusoidal coupling evolve by Mobius group action
,”
Chaos
19
,
043104
(
2009
).
28.
E.
Ott
and
T. M.
Antonsen
, “
Low dimensional behavior of large systems of globally coupled oscillators
,”
Chaos
18
,
037113
(
2008
).
29.
E.
Ott
and
T. M.
Antonsen
, “
Long time evolution of phase oscillator systems
,”
Chaos
19
,
023117
(
2009
).
30.
R. E.
Mirollo
, “
The asymptotic behavior of the order parameter for the infinite-N Kuramoto model
,”
Chaos
22
,
043118
(
2012
).
31.
D. M.
Abrams
,
R.
Mirollo
,
S. H.
Strogatz
, and
D. A.
Wiley
, “
Solvable model for chimera states of coupled oscillators
,”
Phys. Rev. Lett.
101
,
084103
(
2008
).
32.
Y.
Kuramoto
and
D.
Battogtokh
, “
Coexistence of coherence and incoherence in nonlocally coupled phase oscillators
,”
Nonlinear Phenom. Complex Syst.
5
,
380
385
(
2002
);
D. M.
Abrams
and
S. H.
Strogatz
, “
Chimera states for coupled oscillators
,”
Phys. Rev. Lett.
93
,
174102
(
2004
);
[PubMed]
O. E.
Omel'chenko
,
Y. L.
Maistrenko
, and
P. A.
Tass
, “
Chimera states: The natural link between coherence and incoherence
,”
Phys. Rev. Lett.
100
,
044105
(
2008
).
[PubMed]
33.
P.
So
and
E.
Barreto
, “
Generating macroscopic chaos in a network of globally coupled phase oscillators
,”
Chaos
21
,
033127
(
2011
).
34.
M.
Komarov
and
A.
Pikovsky
, “
Dynamics of multifrequency oscillator communities
,”
Phys. Rev. Lett.
110
,
134101
(
2013
).
35.
M.
Komarov
and
A.
Pikovsky
, “
Effects of nonresonant interaction in ensembles of phase oscillators
,”
Phys. Rev. E
84
,
016210
(
2011
).
36.
O. E.
Omel'chenko
and
M.
Wolfrum
, “
Nonuniversal transitions to synchrony in the Sakaguchi-Kuramoto model
,”
Phys. Rev. Lett.
109
,
164101
(
2012
).
37.
B.
Eckhardt
,
E.
Ott
,
S. H.
Strogatz
,
D. M.
Abrams
, and
A.
McRobie
, “
Modeling walker synchronization on the millennium bridge
,”
Phys. Rev. E
75
,
021110
(
2007
).
38.
K.
Wiesenfeld
and
J. W.
Swift
, “
Averaged equations for Josephson junction series arrays
,”
Phys. Rev. E
51
,
1020
1025
(
1995
);
K.
Wiesenfeld
,
P.
Colet
, and
S. H.
Strogatz
, “
Synchronization transition in a disordered Josephson series array
,”
Phys. Rev. Lett.
76
,
404
407
(
1996
).
[PubMed]
39.
J.
Grollier
,
V.
Cros
, and
A.
Fert
, “
Synchronization of spin-transfer oscillators driven by stimulated microwave currents
,”
Phys. Rev. B
73
,
060409(R)
(
2006
);
V.
Tiberkevich
,
A.
Slavin
,
E.
Bankowski
, and
G.
Gerhart
, “
Phase-locking and frustration in an array of nonlinear spin-torque nano-oscillators
,”
Appl. Phys. Lett.
95
,
262505
(
2009
);
A.
Pikovsky
, “
Robust synchronization of spin-torque oscillators with an LCR load
,”
Phys. Rev. E
88
,
032812
(
2013
).
40.
D.
Iatsenko
,
P. V. E.
McClintock
, and
A.
Stefanovska
, “
Glassy states and superrelaxation in populations of coupled phase oscillators
,”
Nat. Commun.
5
,
4118
(
2014
).
41.
V.
Vlasov
,
E. E. N.
Macau
, and
A.
Pikovsky
, “
Synchronization of oscillators in a Kuramoto-type model with generic coupling
,”
Chaos
24
,
023120
(
2014
).
42.
H.
Hong
and
S. H.
Strogatz
, “
Kuramoto model of coupled oscillators with positive and negative coupling parameters: An example of conformist and contrarian oscillators
,”
Phys. Rev. Lett.
106
,
054102
(
2011
).
43.
D. H.
Zanette
, “
Synchronization and frustration in oscillator networks with attractive and repulsive interactions
,”
EPL
72
,
190
(
2005
).
44.
Y.
Maistrenko
,
B.
Penkovsky
, and
M.
Rosenblum
, “
Solitary state at the edge of synchrony in ensembles with attractive and repulsive interaction
,”
Phys. Rev. E
89
,
060901(R)
(
2014
).
45.
W.
Braun
,
A.
Pikovsky
,
M. A.
Matias
, and
P.
Colet
, “
Global dynamics of oscillator populations under common noise
,”
EPL
99
,
20006
(
2012
).
46.
O. V.
Popovych
,
Y. L.
Maistrenko
, and
P. A.
Tass
, “
Phase chaos in coupled oscillators
,”
Phys. Rev. E
71
,
065201
(
2005
).
47.
H.
Daido
, “
Intrinsic fluctuations and a phase transition in a class of large population of interacting oscillators
,”
J. Stat. Phys.
60
,
753
800
(
1990
).
48.
H.
Hong
,
H.
Chaté
,
H.
Park
, and
L.-H.
Tang
, “
Entrainment transition in populations of random frequency oscillators
,”
Phys. Rev. Lett.
99
,
184101
(
2007
).
49.
H.
Hong
,
M. Y.
Choi
, and
B. J.
Kim
, “
Synchronization on small-world networks
,”
Phys. Rev. E
65
,
026139
(
2002
).
50.
P. S.
Skardal
and
J. G.
Restrepo
, “
Hierarchical synchrony of phase oscillators in modular networks
,”
Phys. Rev. E
85
,
016208
(
2012
).
51.
Y.
Kazanovich
and
R.
Borisyuk
, “
Synchronization in oscillator systems with a central element and phase shifts
,”
Prog. Theor. Phys.
110
,
1047
1057
(
2003
).
52.
A.
Arenas
,
A.
Díaz-Guilera
, and
C. J.
Pérez-Vicente
, “
Synchronization reveals topological scales in complex networks
,”
Phys. Rev. Lett.
96
,
114102
(
2006
).
53.
M.
Rohden
,
A.
Sorge
,
M.
Timme
, and
D.
Witthaut
, “
Self-organized synchronization in decentralized power grids
,”
Phys. Rev. Lett.
109
,
064101
(
2012
);
[PubMed]
Y.
Susuki
and
I.
Mezić
, “
Nonlinear koopman modes and coherency identification of coupled swing dynamics
,”
IEEE Trans. Power Syst.
26
,
1894
(
2011
);
S.
Lozano
,
L.
Buzna
, and
A.
Díaz-Guilera
, “
Role of network topology in the synchronization of power systems
,”
Eur. Phys. J. B
85
,
472
(
2012
);
F.
Dörfler
,
M.
Chertkov
, and
F.
Bullo
, “
Synchronization in complex oscillator networks and smart grids
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
2005
(
2013
);
[PubMed]
A. E.
Motter
,
S. A.
Myers
,
M.
Anghel
, and
T.
Nishikawa
, “
Spontaneous synchrony in power-grid networks
,”
Nat. Phys.
9
,
191
(
2013
);
P. H. J.
Nardelli
,
N.
Rubido
,
C.
Wang
,
M. S.
Baptista
,
C.
Pomalaza-Raez
,
P.
Cardieri
, and
M.
Latva-Aho
, “
Models for the modern power grid
,”
Eur. Phys. J.
223
,
2423
(
2014
);
A.
Gajduk
,
M.
Todorovski
, and
L.
Kocarev
, “
Stability of power grids: an overview
,”
Eur. Phys. J.
223
,
2387
(
2014
);
P.
Menck
,
J.
Heitzig
,
J.
Kurths
, and
H.
Schellnhuber
, “
How dead ends undermine power grid stability
,”
Nat. Commun.
5
,
3969
(
2014
).
[PubMed]
54.
H.
Sakaguchi
Cooperative phenomena in coupled oscillator systems under external fields
,”
Prog. Theor. Phys.
79
,
39
46
(
1988
);
L. M.
Childs
and
S. H.
Strogatz
, “
Stability diagram for the forced Kuramoto model
,”
Chaos
18
,
043128
(
2008
);
[PubMed]
Y.
Baibolatov
,
M.
Rosenblum
,
Z. Z.
Zhanabaev
,
M.
Kyzgarina
, and
A.
Pikovsky
, “
Periodically forced ensemble of nonlinearly coupled oscillators: from partial to full synchrony
,”
Phys. Rev. E
80
,
046211
(
2009
).
55.
Y.
Kawamura
,
H.
Nakao
,
K.
Arai
,
H.
Kori
, and
Y.
Kuramoto
, “
Collective phase sensitivity
,”
Phys. Rev. Lett.
101
,
024101
(
2008
);
[PubMed]
T.-W.
Ko
and
G. B.
Ermentrout
, “
Phase-response curves of coupled oscillators
,”
Phys. Rev. E
79
,
016211
(
2009
);
Z.
Levnajić
and
A.
Pikovsky
, “
Phase resetting of collective rhythm in ensembles of oscillators
,”
Phys. Rev. E
82
,
056202
(
2010
).
56.
S. H.
Strogatz
and
R. E.
Mirollo
, “
Stability of incoherence in a population of coupled oscillators
,”
J. Stat. Phys.
63
,
613
635
(
1991
);
B.
Fernandez
,
D.
Gérard-Varet
, and
G.
Giacomin
, “
Landau damping in the Kuramoto model
,” e-print: arXiv:1410.6006 [math.AP].
57.
H.
Chiba
and
I.
Nishikawa
, “
Center manifold reduction for large populations of globally coupled phase oscillators
,”
Chaos
21
,
043103
(
2011
);
[PubMed]
H.
Chiba
, “
A proof of the Kuramoto conjecture for a bifurcation structure of the infinite-dimensional Kuramoto model
,”
Ergodic Theor. Dyn. Syst.
35
,
762
834
(
2015
);
H.
Dietert
, “
Stability and bifurcation for the Kuramoto model
,” e-print: arXiv:1411.3752 [math.AP].
58.
H.
Daido
, “
A solvable model of coupled limit-cycle oscillators exhibiting perfect synchrony and novel frequency spectra
,”
Physica D
69
,
394
403
(
1993
);
H.
Daido
, “
Critical conditions of macroscopic mutual entrainment in uniformly coupled limit-cycle oscillators
,”
Prog. Theor. Phys.
89
,
929
934
(
1993
);
H.
Daido
, “
Onset of cooperative entrainment in limit-cycle oscillators with uniform all-to-all interactions: Bifurcation of the order function
,”
Physica D
91
,
24
66
(
1996
).
59.
H.
Daido
, “
Multi-branch entrainment and multi-peaked order-functions in a phase model of limit-cycle oscillators with uniform all-to-all coupling
,”
J. Phys. A: Math. Gen.
28
,
L151
L157
(
1995
).
60.
K.
Okuda
, “
Variety and generality of clustering in globally coupled oscillators
,”
Physica D
63
,
424
436
(
1993
).
61.
D.
Hansel
,
G.
Mato
, and
C.
Meunier
, “
Clustering and slow switching in globally coupled phase oscillators
,”
Phys. Rev. E
48
,
3470
3477
(
1993
).
62.
P.
Ashwin
,
G.
Orosz
,
J.
Wordsworth
, and
S.
Townley
, “
Dynamics on networks of cluster states for globally coupled phase oscillators
,”
SIAM J. Appl. Dyn. Syst.
6
,
728
758
(
2007
);
Ö.
Karabacak
and
P.
Ashwin
, “
Heteroclinic ratchets in networks of coupled oscillators
,”
J. Nonlinear Sci.
20
,
105
129
(
2010
).
63.
H.
Daido
, “
Multibranch entrainment and scaling in large populations of coupled oscillators
,”
Phys. Rev. Lett.
77
,
1406
1409
(
1996
).
64.
M.
Komarov
and
A.
Pikovsky
, “
Multiplicity of singular synchronous states in the Kuramoto model of coupled oscillators
,”
Phys. Rev. Lett.
111
,
204101
(
2013
);
[PubMed]
M.
Komarov
and
A.
Pikovsky
, “
The Kuramoto model of coupled oscillators with a bi-harmonic coupling function
,”
Physica D
289
,
18
31
(
2014
).
65.
A. S.
Pikovsky
,
M. G.
Rosenblum
, and
J.
Kurths
, “
Synchronization in a population of globally coupled chaotic oscillators
,”
Europhys. Lett.
34
,
165
170
(
1996
).
66.
N.
Nakagawa
and
Y.
Kuramoto
, “
Collective chaos in a population of globally coupled oscillators
,”
Prog. Theor. Phys.
89
,
313
323
(
1993
);
N.
Nakagawa
and
Y.
Kuramoto
, “
From collective oscillations to collective chaos in a globally coupled oscillator system
,”
Physica D
75
,
74
80
(
1994
).
67.
M. G.
Rosenblum
,
A. S.
Pikovsky
, and
J.
Kurths
, “
Phase synchronization of chaotic oscillators
,”
Phys. Rev. Lett.
76
,
1804
1807
(
1996
).
68.
H.
Tanaka
,
A.
Lichtenberg
, and
S.
Oishi
, “
First order phase transition resulting from finite inertia in coupled oscillator systems
,”
Phys. Rev. Lett.
78
,
2104
2107
(
1997
).
69.
M.
Antoni
and
S.
Ruffo
, “
Clustering and relaxation in Hamiltonian long-range dynamics
,”
Phys. Rev. E
52
,
2361
2374
(
1995
).
70.
A.
Campa
,
T.
Dauxois
, and
S.
Ruffo
, “
Statistical mechanics and dynamics of solvable models with long–range interactions
,”
Phys. Rep.
480
,
57
159
(
2009
);
S.
Gupta
,
A.
Campa
, and
S.
Ruffo
, “
Kuramoto model of synchronization: equilibrium and nonequilibrium aspects
,”
J. Stat. Mech.
2014
,
R08001
.
71.
S.
Ehrich
,
A.
Pikovsky
, and
M.
Rosenblum
, “
From complete to modulated synchrony in networks of identical hindmarsh-rose neurons
,”
Eur. Phys. J. Spec. Top.
222
,
2407
2416
(
2013
).
72.
J. L.
Hindmarsh
and
R. M.
Rose
, “
A model for neuronal bursting using three coupled first order differential equations
,”
Proc. R. Soc. London, Ser. B
221
,
87
(
1984
).
73.
K.
Kaneko
, “
Information cascade with marginal stability in a network of chaotic elements
,”
Physica D
77
,
456
472
(
1994
);
A.
Pikovsky
,
O.
Popovych
, and
Y.
Maistrenko
, “
Resolving clusters in chaotic ensembles of globally coupled identical oscillators
,”
Phys. Rev. Lett.
87
,
044102
(
2001
).
[PubMed]
74.
M.
Rosenblum
and
A.
Pikovsky
, “
Self-organized quasiperiodicity in oscillator ensembles with global nonlinear coupling
,”
Phys. Rev. Lett.
98
,
064101
(
2007
).
75.
A.
Pikovsky
and
M.
Rosenblum
, “
Self-organized partially synchronous dynamics in populations of nonlinearly coupled oscillators
,”
Physica D
238
(
1
),
27
37
(
2009
).
76.
G.
Filatrella
,
N. F.
Pedersen
, and
K.
Wiesenfeld
, “
Generalized coupling in the Kuramoto model
,”
Phys. Rev. E
75
,
017201
(
2007
).
77.
C.
van Vreeswijk
, “
Partial synchronization in populations of pulse-coupled oscillators
,”
Phys. Rev. E
54
,
5522
5537
(
1996
);
P.
Mohanty
and
A.
Politi
, “
A new approach to partial synchronization in globally coupled rotators
,”
J. Phys. A: Math. Gen.
39
,
L415
L421
(
2006
).
78.
S. K.
Han
,
C.
Kurrer
, and
Y.
Kuramoto
, “
Dephasing and bursting in coupled neural oscillators
,”
Phys. Rev. Lett.
75
,
3190
3193
(
1995
).
79.
K.
Kaneko
, “
Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements
,”
Physica D
41
,
137
172
(
1990
);
H.
Daido
and
K.
Nakanishi
, “
Diffusion-induced inhomogeneity in globally coupled oscillators: Swing-by mechanism
,”
Phys. Rev. Lett.
96
,
054101
(
2006
).
[PubMed]
80.
G. C.
Sethia
and
A.
Sen
, “
Chimera states: the existence criteria revisited
,”
Phys. Rev. Lett.
112
,
144101
(
2014
);
[PubMed]
L.
Schmidt
,
K.
Schönleber
,
K.
Krischer
, and
V.
García-Morales
, “
Coexistence of synchrony and incoherence in oscillatory media under nonlinear global coupling
,”
Chaos
24
,
013102
(
2014
).
[PubMed]
81.
A.
Yeldesbay
,
A.
Pikovsky
, and
M.
Rosenblum
, “
Chimeralike states in an ensemble of globally coupled oscillators
,”
Phys. Rev. Lett.
112
,
144103
(
2014
).
82.
S. H.
Strogatz
,
D. M.
Abrams
,
A.
McRobie
,
B.
Eckhardt
, and
E.
Ott
, “
Theoretical mechanics: Crowd synchrony on the Millennium Bridge
,”
Nature
438
,
43
44
(
2005
).
83.
C.
Masoller
, “
Noise-induced resonance in delayed feedback systems
,”
Phys. Rev. Lett.
88
,
034102
(
2002
).
84.
L.
Glass
and
M. C.
Mackey
,
From Clocks to Chaos: The Rhythms of Life
(
Princeton University Press
,
Princeton, NJ
,
1988
);
A.
Takamatsu
,
T.
Fujii
, and
I.
Endo
, “
Time delay effect in a living coupled oscillator system with the plasmodium ofphysarum polycephalum
,”
Phys. Rev. Lett.
85
,
2026
2029
(
2000
);
[PubMed]
J.
Batzel
and
F.
Kappel
, “
Time delay in physiological systems: analyzing and modeling its impact
,”
Math. Biosci.
234
,
61
74
(
2011
).
[PubMed]
85.
E.
Niebur
,
H. G.
Schuster
, and
D. M.
Kammen
, “
Collective frequencies and metastability in networks of limit-cycle oscillators with time delay
,”
Phys. Rev. Lett.
67
,
2753
2756
(
1991
);
[PubMed]
M. K. S.
Yeung
and
S. H.
Strogatz
, “
Time delay in the Kuramoto model of coupled oscillators
,”
Phys. Rev. Lett.
82
,
648
651
(
1999
);
D.
Goldobin
,
M.
Rosenblum
, and
A.
Pikovsky
, “
Controlling oscillator coherence by delayed feedback
,”
Phys. Rev. E
67
,
061119
(
2003
).
86.
M.
Breakspear
,
S.
Heitmann
, and
A.
Daffertshofer
, “
Generative models of cortical oscillations: neurobiological implications of the Kuramoto model
,”
Front. Human Neurosci.
4
,
190
(
2010
).
87.
M. G.
Rosenblum
and
A. S.
Pikovsky
, “
Delayed feedback control of collective synchrony: An approach to suppression of pathological brain rhythms
,”
Phys. Rev. E.
70
,
041904
(
2004
).
88.
M. G.
Rosenblum
,
N.
Tukhlina
,
A. S.
Pikovsky
, and
L.
Cimponeriu
, “
Delayed feedback suppression of collective rhythmic activity in a neuronal ensemble
,”
Int. J. Bifurcation Chaos
16
,
1989
1999
(
2006
).
89.
N.
Rulkov
,
I.
Timofeev
, and
M.
Bazhenov
, “
Oscillations in large-scale cortical networks: Map-based model
,”
J. Comp. Neurosci.
17
,
203
222
(
2004
).
90.
K.
Mikkelsen
,
A.
Imparato
, and
A.
Torcini
, “
Sisyphus effect in pulse-coupled excitatory neural networks with spike-timing-dependent plasticity
,”
Phys. Rev. E
89
,
062701
(
2014
);
O.
Popovych
,
S.
Yanchuk
, and
P.
Tass
, “
Self-organized noise resistance of oscillatory neural networks with spike timing-dependent plasticity
,”
Sci. Rep.
3
,
2926
(
2013
).
[PubMed]
91.
R.
Burioni
,
M.
Casartelli
,
M.
di Volo
,
R.
Livi
, and
A.
Vezzani
, “
Average synaptic activity and neural networks topology: a global inverse problem
,”
Sci. Rep.
4
,
4336
(
2014
).
92.
R.
Zillmer
,
R.
Livi
,
A.
Politi
, and
A.
Torcini
, “
Desynchronization in diluted neural networks
,”
Phys. Rev. E
74
,
036203
(
2006
).
93.
P.
Tass
,
M.
Rosenblum
,
J.
Weule
,
J.
Kurths
,
A.
Pikovsky
,
J.
Volkmann
,
A.
Schnitzler
, and
H.-J.
Freund
, “
Detection of n:m phase locking from noisy data: Application to magnetoencephalography
,”
Phys. Rev. Lett.
81
,
3291
3294
(
1998
).
94.
P. A.
Tass
,
Phase Resetting in Medicine and Biology. Stochastic Modelling and Data Analysis
(
Springer-Verlag
,
Berlin
,
1999
);
P. A.
Tass
, “
A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations
,”
Biol. Cybern.
89
,
81
88
(
2003
);
[PubMed]
B.
Lysyansky
,
O. V.
Popovych
, and
P. A.
Tass
, “
Desynchronizing anti-resonance effect of m: n on-off coordinated reset stimulation
,”
J. Neural Eng.
8
,
036019
(
2011
).
[PubMed]
95.
B.
Lysyansky
,
O. V.
Popovych
, and
P. A.
Tass
, “
Multi-frequency activation of neuronal networks by coordinated reset stimulation
,”
Interface Focus
1
,
75
85
(
2010
).
96.
M. G.
Rosenblum
and
A. S.
Pikovsky
, “
Controlling synchrony in ensemble of globally coupled oscillators
,”
Phys. Rev. Lett.
92
,
114102
(
2004
).
97.
O. V.
Popovych
,
C.
Hauptmann
, and
P. A.
Tass
, “
Effective desynchronization by nonlinear delayed feedback
,”
Phys. Rev. Lett.
94
,
164102
(
2005
).
98.
N.
Tukhlina
,
M.
Rosenblum
,
A.
Pikovsky
, and
J.
Kurths
, “
Feedback suppression of neural synchrony by vanishing stimulation
,”
Phys. Rev. E.
75
,
011918
(
2007
).
99.
G.
Montaseri
,
M.
Javad Yazdanpanah
,
A.
Pikovsky
, and
M.
Rosenblum
, “
Synchrony suppression in ensembles of coupled oscillators via adaptive vanishing feedback
,”
Chaos
23
,
033122
(
2013
).
100.
P.
Walker
,
T. C. H.
Liew
,
D.
Sarkar
,
M.
Durska
,
A. P. D.
Love
,
M. S.
Skolnick
,
J. S.
Roberts
,
I. A.
Shelykh
,
A. V.
Kavokin
, and
D. N.
Krizhanovskii
, “
Suppression of Zeeman splitting of the energy levels of exciton-polariton condensates in semiconductor microcavities in an external magnetic field
,”
Phys. Rev. Lett.
106
,
257401
(
2011
);
[PubMed]
M.
Xu
,
D.
Tieri
,
E.
Fine
,
J. K.
Thompson
, and
M.
Holland
, “
Synchronization of two ensembles of atoms
,”
Phys. Rev. Lett.
113
,
154101
(
2014
).
[PubMed]
You do not currently have access to this content.