In this paper, we discuss recent progress in research of ensembles of mean field coupled oscillators. Without an ambition to present a comprehensive review, we outline most interesting from our viewpoint results and surprises, as well as interrelations between different approaches.
References
1.
E.
Kaempfer
, The History of Japan (With a Description of the Kingdom of Siam)
(Sloane
, London
, 1727
) posthumous translation; or reprint by McLehose, Glasgow, 1906.2.
See http://1000fireflies.net for description of interacting bike safety lights and their synchronization when up to 250 cyclists ride together, as part of Chicago Artists Month.
3.
N.
Wiener
, Cybernetics or Control and Communication in the Animal and the Machine
(MIT Press
, Cambridge, MA
, 1965
).4.
S. H.
Strogatz
, “Norbert Wiener's brain waves
,” in Frontiers in Mathematical Biology
, Lecture Notes in Biomathematics, Vol. 100
, edited by S. A.
Levin
(Springer-Verlag
, Berlin-Heidelberg
, 1994
), pp. 122
–138
.5.
I.
Kiss
, Y.
Zhai
, and J.
Hudson
, “Emerging coherence in a population of chemical oscillators
,” Science
296
, 1676
–1678
(2002
).6.
Y.
Zhai
, I. Z.
Kiss
, and J. L.
Hudson
, “Control of complex dynamics with time-delayed feedback in populations of chemical oscillators: Desynchronization and clustering
,” Ind. Eng. Chem. Res.
47
, 3502
(2008
).7.
A. A.
Temirbayev
, Z. Z.
Zhanabaev
, S. B.
Tarasov
, V. I.
Ponomarenko
, and M.
Rosenblum
, “Experiments on oscillator ensembles with global nonlinear coupling
,” Phys. Rev. E
85
, 015204(R)
(2012
);A. A.
Temirbayev
, Y. D.
Nalibayev
, Z. Z.
Zhanabaev
, V. I.
Ponomarenko
, and M.
Rosenblum
, “Autonomous and forced dynamics of oscillator ensembles with global nonlinear coupling: An experimental study
,” Phys. Rev. E
87
, 062917
(2013
).8.
E. A.
Martens
, S.
Thutupalli
, A.
Fourriere
, and O.
Hallatschek
, “Chimera states in mechanical oscillator networks
,” Proc. Natl. Acad. Sci. U. S. A.
110
, 10563
–10567
(2013
).9.
S.
Benz
and C.
Burroughs
, “Coherent emission from two-dimensional Josephson junction arrays
,” Appl. Phys. Lett.
58
, 2162
–2164
(1991
).10.
K.
Hirosawa
, S.
Kittaka
, Y.
Oishi
, F.
Kannari
, and T.
Yanagisawa
, “Phase locking in a nd:yvo4 waveguide laser array using talbot cavity
,” Opt. Express
21
, 24952
–24961
(2013
).11.
P.
Richard
, B. M.
Bakker
, B.
Teusink
, K. V.
Dam
, and H. V.
Westerhoff
, “Acetaldehyde mediates the synchronization of sustained glycolytic oscillations in population of yeast cells
,” Eur. J. Biochem.
235
, 238
–241
(1996
).12.
A.
Prindle
, P.
Samayoa
, I.
Razinkov
, T.
Danino
, L. S.
Tsimring
, and J.
Hasty
, “A sensing array of radically coupled genetic “biopixels”
,” Nature
481
, 39
–44
(2012
).13.
P.
Dallard
, T.
Fitzpatrick
, A.
Flint
, A.
Low
, R. R.
Smith
, M.
Willford
, and M.
Roche
, “London millennium bridge: Pedestrian-induced lateral vibration
,” J. Bridge Eng.
6
, 412
–417
(2001
).14.
Z.
Néda
, E.
Ravasz
, Y.
Brechet
, T.
Vicsek
, and A.-L.
Barabási
, “Tumultuous applause can transform itself into waves of synchronized clapping
,” Nature
403
, 849
–850
(2000
);
[PubMed]
Z.
Néda
, E.
Ravasz
, Y.
Brechet
, T.
Vicsek
, and A.-L.
Barabási
, “Physics of the rhythmic applause
,” Phys. Rev. E
61
, 6987
–6992
(2000
).15.
S. M.
Henson
, J. L.
Hayward
, J. M.
Cushing
, and J. C.
Galusha
, “Socially induced synchronization of every-other-day egg laying in a seabird colony
,” The Auk
127
, 571
–580
(2010
).16.
A.
Weller
and L.
Weller
, “Menstrual synchrony under optimal conditions: Bedouin families
,” J. Comp. Psychol.
111
, 143
–151
(1997
);
[PubMed]
M. A.
Arden
and L.
Dye
, “The assessment of menstrual synchrony: Comment on Weller and Weller (1997)
,” J. Comp. Psychol.
112
, 323
–324
(1998
).
[PubMed]
17.
A.
Ziomkiewicz
, “Menstrual synchrony: Fact or artifact?
,” Human Nat.
17
, 419
–432
(2006
).18.
A. T.
Winfree
, “Biological rhythms and the behavior of populations of coupled oscillators
,” J. Theor. Biol.
16
, 15
–42
(1967
);
[PubMed]
A. T.
Winfree
, The Geometry of Biological Time
(Springer
, Berlin
, 1980
).19.
C. C.
Canavier
, “Phase response curve
,” Scholarpedia
1
(12
), 1332
(2006
).20.
J.
Ariaratnam
and S.
Strogatz
, “Phase diagram for the winfree model of coupled nonlinear oscillators
,” Phys. Rev. Lett.
86
, 4278
–4281
(2001
);
[PubMed]
D.
Quinn
, R.
Rand
, and S.
Strogatz
, “Singular unlocking transition in the winfree model of coupled oscillators
,” Phys. Rev. E
75
, 036218
(2007
);D.
Pazó
and E.
Montbrió
, “Low-dimensional dynamics of populations of pulse-coupled oscillators
,” Phys. Rev. X
4
, 011009
(2014
).21.
F.
Giannuzzi
, D.
Marinazzo
, G.
Nardulli
, M.
Pellicoro
, and S.
Stramaglia
, “Phase diagram of a generalized Winfree model
,” Phys. Rev. E
75
, 051104
(2007
).22.
Y.
Kuramoto
, “Self-entrainment of a population of coupled nonlinear oscillators
,” in International Symposium on Mathematical Problems in Theoretical Physics
, Lecture Notes Physics, Vol. 39
, edited by H.
Araki
(Springer
, New York
, 1975
), p. 420
;Y.
Kuramoto
, Chemical Oscillations, Waves and Turbulence
(Springer
, Berlin
, 1984
).23.
D.
Pazó
, “Thermodynamic limit of the first-order phase transition in the Kuramoto model
,” Phys. Rev. E
72
, 046211
(2005
).24.
H.
Sakaguchi
and Y.
Kuramoto
, “A soluble active rotator model showing phase transition via mutual entrainment
,” Prog. Theor. Phys.
76
, 576
–581
(1986
).25.
S.
Watanabe
and S. H.
Strogatz
, “Integrability of a globally coupled oscillator array
,” Phys. Rev. Lett.
70
, 2391
–2394
(1993
);
[PubMed]
S.
Watanabe
and S. H.
Strogatz
, “Constants of motion for superconducting Josephson arrays
,” Physica D
74
, 197
–253
(1994
).26.
A.
Pikovsky
and M.
Rosenblum
, “Partially integrable dynamics of hierarchical populations of coupled oscillators
,” Phys. Rev. Lett.
101
, 264103
(2008
);
[PubMed]
A.
Pikovsky
and M.
Rosenblum
, “Dynamics of heterogeneous oscillator ensembles in terms of collective variables
,” Physica D
240
, 872
–881
(2011
).27.
S. A.
Marvel
, R. E.
Mirollo
, and S. H.
Strogatz
, “Phase oscillators with global sinusoidal coupling evolve by Mobius group action
,” Chaos
19
, 043104
(2009
).28.
E.
Ott
and T. M.
Antonsen
, “Low dimensional behavior of large systems of globally coupled oscillators
,” Chaos
18
, 037113
(2008
).29.
E.
Ott
and T. M.
Antonsen
, “Long time evolution of phase oscillator systems
,” Chaos
19
, 023117
(2009
).30.
R. E.
Mirollo
, “The asymptotic behavior of the order parameter for the infinite-N Kuramoto model
,” Chaos
22
, 043118
(2012
).31.
D. M.
Abrams
, R.
Mirollo
, S. H.
Strogatz
, and D. A.
Wiley
, “Solvable model for chimera states of coupled oscillators
,” Phys. Rev. Lett.
101
, 084103
(2008
).32.
Y.
Kuramoto
and D.
Battogtokh
, “Coexistence of coherence and incoherence in nonlocally coupled phase oscillators
,” Nonlinear Phenom. Complex Syst.
5
, 380
–385
(2002
);D. M.
Abrams
and S. H.
Strogatz
, “Chimera states for coupled oscillators
,” Phys. Rev. Lett.
93
, 174102
(2004
);
[PubMed]
O. E.
Omel'chenko
, Y. L.
Maistrenko
, and P. A.
Tass
, “Chimera states: The natural link between coherence and incoherence
,” Phys. Rev. Lett.
100
, 044105
(2008
).
[PubMed]
33.
P.
So
and E.
Barreto
, “Generating macroscopic chaos in a network of globally coupled phase oscillators
,” Chaos
21
, 033127
(2011
).34.
M.
Komarov
and A.
Pikovsky
, “Dynamics of multifrequency oscillator communities
,” Phys. Rev. Lett.
110
, 134101
(2013
).35.
M.
Komarov
and A.
Pikovsky
, “Effects of nonresonant interaction in ensembles of phase oscillators
,” Phys. Rev. E
84
, 016210
(2011
).36.
O. E.
Omel'chenko
and M.
Wolfrum
, “Nonuniversal transitions to synchrony in the Sakaguchi-Kuramoto model
,” Phys. Rev. Lett.
109
, 164101
(2012
).37.
B.
Eckhardt
, E.
Ott
, S. H.
Strogatz
, D. M.
Abrams
, and A.
McRobie
, “Modeling walker synchronization on the millennium bridge
,” Phys. Rev. E
75
, 021110
(2007
).38.
K.
Wiesenfeld
and J. W.
Swift
, “Averaged equations for Josephson junction series arrays
,” Phys. Rev. E
51
, 1020
–1025
(1995
);K.
Wiesenfeld
, P.
Colet
, and S. H.
Strogatz
, “Synchronization transition in a disordered Josephson series array
,” Phys. Rev. Lett.
76
, 404
–407
(1996
).
[PubMed]
39.
J.
Grollier
, V.
Cros
, and A.
Fert
, “Synchronization of spin-transfer oscillators driven by stimulated microwave currents
,” Phys. Rev. B
73
, 060409(R)
(2006
);V.
Tiberkevich
, A.
Slavin
, E.
Bankowski
, and G.
Gerhart
, “Phase-locking and frustration in an array of nonlinear spin-torque nano-oscillators
,” Appl. Phys. Lett.
95
, 262505
(2009
);A.
Pikovsky
, “Robust synchronization of spin-torque oscillators with an LCR load
,” Phys. Rev. E
88
, 032812
(2013
).40.
D.
Iatsenko
, P. V. E.
McClintock
, and A.
Stefanovska
, “Glassy states and superrelaxation in populations of coupled phase oscillators
,” Nat. Commun.
5
, 4118
(2014
).41.
V.
Vlasov
, E. E. N.
Macau
, and A.
Pikovsky
, “Synchronization of oscillators in a Kuramoto-type model with generic coupling
,” Chaos
24
, 023120
(2014
).42.
H.
Hong
and S. H.
Strogatz
, “Kuramoto model of coupled oscillators with positive and negative coupling parameters: An example of conformist and contrarian oscillators
,” Phys. Rev. Lett.
106
, 054102
(2011
).43.
D. H.
Zanette
, “Synchronization and frustration in oscillator networks with attractive and repulsive interactions
,” EPL
72
, 190
(2005
).44.
Y.
Maistrenko
, B.
Penkovsky
, and M.
Rosenblum
, “Solitary state at the edge of synchrony in ensembles with attractive and repulsive interaction
,” Phys. Rev. E
89
, 060901(R)
(2014
).45.
W.
Braun
, A.
Pikovsky
, M. A.
Matias
, and P.
Colet
, “Global dynamics of oscillator populations under common noise
,” EPL
99
, 20006
(2012
).46.
O. V.
Popovych
, Y. L.
Maistrenko
, and P. A.
Tass
, “Phase chaos in coupled oscillators
,” Phys. Rev. E
71
, 065201
(2005
).47.
H.
Daido
, “Intrinsic fluctuations and a phase transition in a class of large population of interacting oscillators
,” J. Stat. Phys.
60
, 753
–800
(1990
).48.
H.
Hong
, H.
Chaté
, H.
Park
, and L.-H.
Tang
, “Entrainment transition in populations of random frequency oscillators
,” Phys. Rev. Lett.
99
, 184101
(2007
).49.
H.
Hong
, M. Y.
Choi
, and B. J.
Kim
, “Synchronization on small-world networks
,” Phys. Rev. E
65
, 026139
(2002
).50.
P. S.
Skardal
and J. G.
Restrepo
, “Hierarchical synchrony of phase oscillators in modular networks
,” Phys. Rev. E
85
, 016208
(2012
).51.
Y.
Kazanovich
and R.
Borisyuk
, “Synchronization in oscillator systems with a central element and phase shifts
,” Prog. Theor. Phys.
110
, 1047
–1057
(2003
).52.
A.
Arenas
, A.
Díaz-Guilera
, and C. J.
Pérez-Vicente
, “Synchronization reveals topological scales in complex networks
,” Phys. Rev. Lett.
96
, 114102
(2006
).53.
M.
Rohden
, A.
Sorge
, M.
Timme
, and D.
Witthaut
, “Self-organized synchronization in decentralized power grids
,” Phys. Rev. Lett.
109
, 064101
(2012
);
[PubMed]
Y.
Susuki
and I.
Mezić
, “Nonlinear koopman modes and coherency identification of coupled swing dynamics
,” IEEE Trans. Power Syst.
26
, 1894
(2011
);S.
Lozano
, L.
Buzna
, and A.
Díaz-Guilera
, “Role of network topology in the synchronization of power systems
,” Eur. Phys. J. B
85
, 472
(2012
);F.
Dörfler
, M.
Chertkov
, and F.
Bullo
, “Synchronization in complex oscillator networks and smart grids
,” Proc. Natl. Acad. Sci. U. S. A.
110
, 2005
(2013
);
[PubMed]
A. E.
Motter
, S. A.
Myers
, M.
Anghel
, and T.
Nishikawa
, “Spontaneous synchrony in power-grid networks
,” Nat. Phys.
9
, 191
(2013
);P. H. J.
Nardelli
, N.
Rubido
, C.
Wang
, M. S.
Baptista
, C.
Pomalaza-Raez
, P.
Cardieri
, and M.
Latva-Aho
, “Models for the modern power grid
,” Eur. Phys. J.
223
, 2423
(2014
);A.
Gajduk
, M.
Todorovski
, and L.
Kocarev
, “Stability of power grids: an overview
,” Eur. Phys. J.
223
, 2387
(2014
);P.
Menck
, J.
Heitzig
, J.
Kurths
, and H.
Schellnhuber
, “How dead ends undermine power grid stability
,” Nat. Commun.
5
, 3969
(2014
).
[PubMed]
54.
H.
Sakaguchi
“Cooperative phenomena in coupled oscillator systems under external fields
,” Prog. Theor. Phys.
79
, 39
–46
(1988
);L. M.
Childs
and S. H.
Strogatz
, “Stability diagram for the forced Kuramoto model
,” Chaos
18
, 043128
(2008
);
[PubMed]
Y.
Baibolatov
, M.
Rosenblum
, Z. Z.
Zhanabaev
, M.
Kyzgarina
, and A.
Pikovsky
, “Periodically forced ensemble of nonlinearly coupled oscillators: from partial to full synchrony
,” Phys. Rev. E
80
, 046211
(2009
).55.
Y.
Kawamura
, H.
Nakao
, K.
Arai
, H.
Kori
, and Y.
Kuramoto
, “Collective phase sensitivity
,” Phys. Rev. Lett.
101
, 024101
(2008
);
[PubMed]
T.-W.
Ko
and G. B.
Ermentrout
, “Phase-response curves of coupled oscillators
,” Phys. Rev. E
79
, 016211
(2009
);Z.
Levnajić
and A.
Pikovsky
, “Phase resetting of collective rhythm in ensembles of oscillators
,” Phys. Rev. E
82
, 056202
(2010
).56.
S. H.
Strogatz
and R. E.
Mirollo
, “Stability of incoherence in a population of coupled oscillators
,” J. Stat. Phys.
63
, 613
–635
(1991
);B.
Fernandez
, D.
Gérard-Varet
, and G.
Giacomin
, “Landau damping in the Kuramoto model
,” e-print: arXiv:1410.6006 [math.AP].57.
H.
Chiba
and I.
Nishikawa
, “Center manifold reduction for large populations of globally coupled phase oscillators
,” Chaos
21
, 043103
(2011
);
[PubMed]
H.
Chiba
, “A proof of the Kuramoto conjecture for a bifurcation structure of the infinite-dimensional Kuramoto model
,” Ergodic Theor. Dyn. Syst.
35
, 762
–834
(2015
);58.
H.
Daido
, “A solvable model of coupled limit-cycle oscillators exhibiting perfect synchrony and novel frequency spectra
,” Physica D
69
, 394
–403
(1993
);H.
Daido
, “Critical conditions of macroscopic mutual entrainment in uniformly coupled limit-cycle oscillators
,” Prog. Theor. Phys.
89
, 929
–934
(1993
);H.
Daido
, “Onset of cooperative entrainment in limit-cycle oscillators with uniform all-to-all interactions: Bifurcation of the order function
,” Physica D
91
, 24
–66
(1996
).59.
H.
Daido
, “Multi-branch entrainment and multi-peaked order-functions in a phase model of limit-cycle oscillators with uniform all-to-all coupling
,” J. Phys. A: Math. Gen.
28
, L151
–L157
(1995
).60.
K.
Okuda
, “Variety and generality of clustering in globally coupled oscillators
,” Physica D
63
, 424
–436
(1993
).61.
D.
Hansel
, G.
Mato
, and C.
Meunier
, “Clustering and slow switching in globally coupled phase oscillators
,” Phys. Rev. E
48
, 3470
–3477
(1993
).62.
P.
Ashwin
, G.
Orosz
, J.
Wordsworth
, and S.
Townley
, “Dynamics on networks of cluster states for globally coupled phase oscillators
,” SIAM J. Appl. Dyn. Syst.
6
, 728
–758
(2007
);Ö.
Karabacak
and P.
Ashwin
, “Heteroclinic ratchets in networks of coupled oscillators
,” J. Nonlinear Sci.
20
, 105
–129
(2010
).63.
H.
Daido
, “Multibranch entrainment and scaling in large populations of coupled oscillators
,” Phys. Rev. Lett.
77
, 1406
–1409
(1996
).64.
M.
Komarov
and A.
Pikovsky
, “Multiplicity of singular synchronous states in the Kuramoto model of coupled oscillators
,” Phys. Rev. Lett.
111
, 204101
(2013
);
[PubMed]
M.
Komarov
and A.
Pikovsky
, “The Kuramoto model of coupled oscillators with a bi-harmonic coupling function
,” Physica D
289
, 18
–31
(2014
).65.
A. S.
Pikovsky
, M. G.
Rosenblum
, and J.
Kurths
, “Synchronization in a population of globally coupled chaotic oscillators
,” Europhys. Lett.
34
, 165
–170
(1996
).66.
N.
Nakagawa
and Y.
Kuramoto
, “Collective chaos in a population of globally coupled oscillators
,” Prog. Theor. Phys.
89
, 313
–323
(1993
);N.
Nakagawa
and Y.
Kuramoto
, “From collective oscillations to collective chaos in a globally coupled oscillator system
,” Physica D
75
, 74
–80
(1994
).67.
M. G.
Rosenblum
, A. S.
Pikovsky
, and J.
Kurths
, “Phase synchronization of chaotic oscillators
,” Phys. Rev. Lett.
76
, 1804
–1807
(1996
).68.
H.
Tanaka
, A.
Lichtenberg
, and S.
Oishi
, “First order phase transition resulting from finite inertia in coupled oscillator systems
,” Phys. Rev. Lett.
78
, 2104
–2107
(1997
).69.
M.
Antoni
and S.
Ruffo
, “Clustering and relaxation in Hamiltonian long-range dynamics
,” Phys. Rev. E
52
, 2361
–2374
(1995
).70.
A.
Campa
, T.
Dauxois
, and S.
Ruffo
, “Statistical mechanics and dynamics of solvable models with long–range interactions
,” Phys. Rep.
480
, 57
–159
(2009
);S.
Gupta
, A.
Campa
, and S.
Ruffo
, “Kuramoto model of synchronization: equilibrium and nonequilibrium aspects
,” J. Stat. Mech.
2014
, R08001
.71.
S.
Ehrich
, A.
Pikovsky
, and M.
Rosenblum
, “From complete to modulated synchrony in networks of identical hindmarsh-rose neurons
,” Eur. Phys. J. Spec. Top.
222
, 2407
–2416
(2013
).72.
J. L.
Hindmarsh
and R. M.
Rose
, “A model for neuronal bursting using three coupled first order differential equations
,” Proc. R. Soc. London, Ser. B
221
, 87
(1984
).73.
K.
Kaneko
, “Information cascade with marginal stability in a network of chaotic elements
,” Physica D
77
, 456
–472
(1994
);A.
Pikovsky
, O.
Popovych
, and Y.
Maistrenko
, “Resolving clusters in chaotic ensembles of globally coupled identical oscillators
,” Phys. Rev. Lett.
87
, 044102
(2001
).
[PubMed]
74.
M.
Rosenblum
and A.
Pikovsky
, “Self-organized quasiperiodicity in oscillator ensembles with global nonlinear coupling
,” Phys. Rev. Lett.
98
, 064101
(2007
).75.
A.
Pikovsky
and M.
Rosenblum
, “Self-organized partially synchronous dynamics in populations of nonlinearly coupled oscillators
,” Physica D
238
(1
), 27
–37
(2009
).76.
G.
Filatrella
, N. F.
Pedersen
, and K.
Wiesenfeld
, “Generalized coupling in the Kuramoto model
,” Phys. Rev. E
75
, 017201
(2007
).77.
C.
van Vreeswijk
, “Partial synchronization in populations of pulse-coupled oscillators
,” Phys. Rev. E
54
, 5522
–5537
(1996
);P.
Mohanty
and A.
Politi
, “A new approach to partial synchronization in globally coupled rotators
,” J. Phys. A: Math. Gen.
39
, L415
–L421
(2006
).78.
S. K.
Han
, C.
Kurrer
, and Y.
Kuramoto
, “Dephasing and bursting in coupled neural oscillators
,” Phys. Rev. Lett.
75
, 3190
–3193
(1995
).79.
K.
Kaneko
, “Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements
,” Physica D
41
, 137
–172
(1990
);H.
Daido
and K.
Nakanishi
, “Diffusion-induced inhomogeneity in globally coupled oscillators: Swing-by mechanism
,” Phys. Rev. Lett.
96
, 054101
(2006
).
[PubMed]
80.
G. C.
Sethia
and A.
Sen
, “Chimera states: the existence criteria revisited
,” Phys. Rev. Lett.
112
, 144101
(2014
);
[PubMed]
L.
Schmidt
, K.
Schönleber
, K.
Krischer
, and V.
García-Morales
, “Coexistence of synchrony and incoherence in oscillatory media under nonlinear global coupling
,” Chaos
24
, 013102
(2014
).
[PubMed]
81.
A.
Yeldesbay
, A.
Pikovsky
, and M.
Rosenblum
, “Chimeralike states in an ensemble of globally coupled oscillators
,” Phys. Rev. Lett.
112
, 144103
(2014
).82.
S. H.
Strogatz
, D. M.
Abrams
, A.
McRobie
, B.
Eckhardt
, and E.
Ott
, “Theoretical mechanics: Crowd synchrony on the Millennium Bridge
,” Nature
438
, 43
–44
(2005
).83.
C.
Masoller
, “Noise-induced resonance in delayed feedback systems
,” Phys. Rev. Lett.
88
, 034102
(2002
).84.
L.
Glass
and M. C.
Mackey
, From Clocks to Chaos: The Rhythms of Life
(Princeton University Press
, Princeton, NJ
, 1988
);A.
Takamatsu
, T.
Fujii
, and I.
Endo
, “Time delay effect in a living coupled oscillator system with the plasmodium ofphysarum polycephalum
,” Phys. Rev. Lett.
85
, 2026
–2029
(2000
);
[PubMed]
J.
Batzel
and F.
Kappel
, “Time delay in physiological systems: analyzing and modeling its impact
,” Math. Biosci.
234
, 61
–74
(2011
).
[PubMed]
85.
E.
Niebur
, H. G.
Schuster
, and D. M.
Kammen
, “Collective frequencies and metastability in networks of limit-cycle oscillators with time delay
,” Phys. Rev. Lett.
67
, 2753
–2756
(1991
);
[PubMed]
M. K. S.
Yeung
and S. H.
Strogatz
, “Time delay in the Kuramoto model of coupled oscillators
,” Phys. Rev. Lett.
82
, 648
–651
(1999
);D.
Goldobin
, M.
Rosenblum
, and A.
Pikovsky
, “Controlling oscillator coherence by delayed feedback
,” Phys. Rev. E
67
, 061119
(2003
).86.
M.
Breakspear
, S.
Heitmann
, and A.
Daffertshofer
, “Generative models of cortical oscillations: neurobiological implications of the Kuramoto model
,” Front. Human Neurosci.
4
, 190
(2010
).87.
M. G.
Rosenblum
and A. S.
Pikovsky
, “Delayed feedback control of collective synchrony: An approach to suppression of pathological brain rhythms
,” Phys. Rev. E.
70
, 041904
(2004
).88.
M. G.
Rosenblum
, N.
Tukhlina
, A. S.
Pikovsky
, and L.
Cimponeriu
, “Delayed feedback suppression of collective rhythmic activity in a neuronal ensemble
,” Int. J. Bifurcation Chaos
16
, 1989
–1999
(2006
).89.
N.
Rulkov
, I.
Timofeev
, and M.
Bazhenov
, “Oscillations in large-scale cortical networks: Map-based model
,” J. Comp. Neurosci.
17
, 203
–222
(2004
).90.
K.
Mikkelsen
, A.
Imparato
, and A.
Torcini
, “Sisyphus effect in pulse-coupled excitatory neural networks with spike-timing-dependent plasticity
,” Phys. Rev. E
89
, 062701
(2014
);O.
Popovych
, S.
Yanchuk
, and P.
Tass
, “Self-organized noise resistance of oscillatory neural networks with spike timing-dependent plasticity
,” Sci. Rep.
3
, 2926
(2013
).
[PubMed]
91.
R.
Burioni
, M.
Casartelli
, M.
di Volo
, R.
Livi
, and A.
Vezzani
, “Average synaptic activity and neural networks topology: a global inverse problem
,” Sci. Rep.
4
, 4336
(2014
).92.
R.
Zillmer
, R.
Livi
, A.
Politi
, and A.
Torcini
, “Desynchronization in diluted neural networks
,” Phys. Rev. E
74
, 036203
(2006
).93.
P.
Tass
, M.
Rosenblum
, J.
Weule
, J.
Kurths
, A.
Pikovsky
, J.
Volkmann
, A.
Schnitzler
, and H.-J.
Freund
, “Detection of n:m phase locking from noisy data: Application to magnetoencephalography
,” Phys. Rev. Lett.
81
, 3291
–3294
(1998
).94.
P. A.
Tass
, Phase Resetting in Medicine and Biology. Stochastic Modelling and Data Analysis
(Springer-Verlag
, Berlin
, 1999
);P. A.
Tass
, “A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations
,” Biol. Cybern.
89
, 81
–88
(2003
);
[PubMed]
B.
Lysyansky
, O. V.
Popovych
, and P. A.
Tass
, “Desynchronizing anti-resonance effect of m: n on-off coordinated reset stimulation
,” J. Neural Eng.
8
, 036019
(2011
).
[PubMed]
95.
B.
Lysyansky
, O. V.
Popovych
, and P. A.
Tass
, “Multi-frequency activation of neuronal networks by coordinated reset stimulation
,” Interface Focus
1
, 75
–85
(2010
).96.
M. G.
Rosenblum
and A. S.
Pikovsky
, “Controlling synchrony in ensemble of globally coupled oscillators
,” Phys. Rev. Lett.
92
, 114102
(2004
).97.
O. V.
Popovych
, C.
Hauptmann
, and P. A.
Tass
, “Effective desynchronization by nonlinear delayed feedback
,” Phys. Rev. Lett.
94
, 164102
(2005
).98.
N.
Tukhlina
, M.
Rosenblum
, A.
Pikovsky
, and J.
Kurths
, “Feedback suppression of neural synchrony by vanishing stimulation
,” Phys. Rev. E.
75
, 011918
(2007
).99.
G.
Montaseri
, M.
Javad Yazdanpanah
, A.
Pikovsky
, and M.
Rosenblum
, “Synchrony suppression in ensembles of coupled oscillators via adaptive vanishing feedback
,” Chaos
23
, 033122
(2013
).100.
P.
Walker
, T. C. H.
Liew
, D.
Sarkar
, M.
Durska
, A. P. D.
Love
, M. S.
Skolnick
, J. S.
Roberts
, I. A.
Shelykh
, A. V.
Kavokin
, and D. N.
Krizhanovskii
, “Suppression of Zeeman splitting of the energy levels of exciton-polariton condensates in semiconductor microcavities in an external magnetic field
,” Phys. Rev. Lett.
106
, 257401
(2011
);
[PubMed]
M.
Xu
, D.
Tieri
, E.
Fine
, J. K.
Thompson
, and M.
Holland
, “Synchronization of two ensembles of atoms
,” Phys. Rev. Lett.
113
, 154101
(2014
).
[PubMed]
© 2015 AIP Publishing LLC.
2015
AIP Publishing LLC
You do not currently have access to this content.