“Chaos is found in greatest abundance wherever order is being sought.

It always defeats order, because it is better organized”

Terry Pratchett

A brief review is presented of some recent findings in the theory of chaotic dynamics. We also prove a statement that could be naturally considered as a dual one to the Poincaré theorem on recurrences. Numerical results demonstrate that some parts of the phase space of chaotic systems are more likely to be visited earlier than other parts. A new class of chaotic focusing billiards is discussed that clearly violates the main condition considered to be necessary for chaos in focusing billiards.

1.
M.
Kac
, “
On the notion of recurrence in discrete stochastic processes
,”
Bul. Am. Math. Soc.
53
,
1002
1010
(
1947
).
2.
M.
Demers
and
L. S.
Young
, “
Escape rates and conditionally invariant measures
,”
Nonlinearity
19
,
377
397
(
2006
).
3.
M.
Demers
,
P.
Wright
, and
L. S.
Young
, “
Escape rates and physically relevant measures for billiards with small holes
,”
Commun. Math. Phys.
294
(
2
),
353
388
(
2010
).
4.
M.
Demers
and
P.
Wright
, “
Behavior of the escape rate function in hyperbolic dynamical systems
,”
Nonlinearity
25
,
2133
2150
(
2012
).
5.
L. A.
Bunimovich
and
A.
Yurchenko
, “
Where to place a hole to achieve a maximal escape rate
,”
Isr. J. Math.
182
,
229
252
(
2011
).
6.
G.
Keller
and
C.
Liverani
, “
Rare events, escape rates and quasistationarity: Some exact formulae
,”
J. Stat. Phys.
135
(
3
),
519
534
(
2009
).
7.
L. A.
Bunimovich
, “
Fair dice-like hyperbolic systems
,”
Contemp. Math.
567
,
79
87
(
2012
).
8.
L. A.
Bunimovich
, “
Short- and long-term forecast for chaotic and random systems
,”
Nonlinearity
27
(
9
),
R51
R59
(
2014
).
9.
I. P.
Cornfeld
,
S. V.
Fomin
, and
Y. G.
Sinai
, “
Ergodic theory
,” in
Fundamental Principles of Mathematical Sciences
(
Springer-Verlag
,
NY
,
1982
), Vol. 245.
10.
E.
Ott
,
Chaos in Dynamical Systems
(
Cambridge University Press
,
Cambridge
,
1999
).
11.
Y.
Bakhtin
and
L. A.
Bunimovich
, “
The optimal sink and the best source in a Markov chain
,”
J. Stat. Phys.
143
,
943
954
(
2011
).
12.
N.
Chernov
and
R.
Markarian
,
Chaotic Billiards
, Mathematical Surveys and Monographs (
AMS
,
2006
), Vol. 127.
13.
G.
Cristadoro
,
G.
Knight
, and
M.
Degli Esposti
, “
Follow the fugitive: An application of the method of images to open systems
,”
J. Phys A
46
,
272001
272008
(
2013
).
14.
Y. G.
Sinai
, “
Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards
,”
Russ. Math. Surv.
25
,
137
189
(
1970
).
15.
V. S.
Afraimovich
and
L. A.
Bunimovich
, “
Which hole is leaking the most: A topological approach to study open systems
,”
Nonlinearity
23
,
643
656
(
2010
).
16.
G. A.
Hedlund
, “
The dynamics of geodesic flows
,”
Bull. Am. Math. Soc.
45
,
241
245
(
1939
).
17.
E.
Hopf
, “
Statistik der loesungen geodaetischen linien in mannigfaltigkeiten negativer kruemmung
,”
Ber. Verh. Saechs. Akad. Wiss. Leipzig
91
,
261
304
(
1939
).
18.
V. F.
Lazutkin
, “
Existence of a continuum of closed invariant curves for a convex billiard
,”
Math. USSR Izvestija
7
,
185
214
(
1973
).
19.
L. A.
Bunimovich
, “
On billiards closed to dispersing
,”
Mat. Sb.
95
,
49
73
(
1974
).
20.
L. A.
Bunimovich
, “
On ergodic properties of certain billiards
,”
Funct. Anal. Appl.
8
,
254
255
(
1974
).
21.
H.-J.
Stockmann
,
Quantum Chaos, An Introduction
(
Cambridge University Press
,
Cambridge
,
1999
).
22.
L. A.
Bunimovich
,
H.
Zhang
, and
P.
Zhang
, “
On another edge of defocusing: Hyperbolicity of asymmetric lemon billiards
,” e-print arXiv:1126508.
23.
E.
Heller
and
S.
Tomsovic
, “
Postmodern quantum mechanics
,”
Phys. Today
46
(
7
),
38
46
(
1993
).
You do not currently have access to this content.