We summarize some of the main results discovered over the past three decades concerning symmetric dynamical systems and networks of dynamical systems, with a focus on pattern formation. In both of these contexts, extra constraints on the dynamical system are imposed, and the generic phenomena can change. The main areas discussed are time-periodic states, mode interactions, and non-compact symmetry groups such as the Euclidean group. We consider both dynamics and bifurcations. We summarize applications of these ideas to pattern formation in a variety of physical and biological systems, and explain how the methods were motivated by transferring to new contexts René Thom's general viewpoint, one version of which became known as “catastrophe theory.” We emphasize the role of symmetry-breaking in the creation of patterns. Topics include equivariant Hopf bifurcation, which gives conditions for a periodic state to bifurcate from an equilibrium, and the H/K theorem, which classifies the pairs of setwise and pointwise symmetries of periodic states in equivariant dynamics. We discuss mode interactions, which organize multiple bifurcations into a single degenerate bifurcation, and systems with non-compact symmetry groups, where new technical issues arise. We transfer many of the ideas to the context of networks of coupled dynamical systems, and interpret synchrony and phase relations in network dynamics as a type of pattern, in which space is discretized into finitely many nodes, while time remains continuous. We also describe a variety of applications including animal locomotion, Couette–Taylor flow, flames, the Belousov–Zhabotinskii reaction, binocular rivalry, and a nonlinear filter based on anomalous growth rates for the amplitude of periodic oscillations in a feed-forward network.

1.
J. F.
Adams
,
Lectures on Lie Groups
(
University of Chicago Press
,
Chicago
,
1969
).
2.
V. I.
Arnold
, “
Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian
,”
Usp. Mat. Nauk
18
,
13
40
(
1963
).
3.
D. C. D.
Andereck
,
S. S.
Liu
, and
H. L.
Swinney
, “
Flow regimes in a circular Couette system with independently rotating cylinders
,”
J. Fluid Mech.
164
,
155
183
(
1986
).
4.
P.
Ashwin
and
I.
Melbourne
, “
Noncompact drift for relative equilibria and relative periodic orbits
,”
Nonlinearity
10
,
595
616
(
1997
).
5.
P.
Ashwin
,
I.
Melbourne
, and
M.
Nicol
, “
Drift bifurcations of relative equilibria and transitions of spiral waves
,”
Nonlinearity
12
,
741
755
(
1999
).
6.
P.
Ashwin
,
I.
Melbourne
, and
M.
Nicol
, “
Hypermeander of spirals; local bifurcations and statistical properties
,”
Physica D
156
,
364
382
(
2001
).
7.
A. K.
Bajaj
and
P. R.
Sethna
, “
Flow induced bifurcations to three dimensional oscillatory motions in continuous tubes
,”
SIAM J. Appl. Math.
44
,
270
286
(
1984
).
8.
D.
Barkley
, “
A model for fast computer-simulation of waves in excitable media
,”
Physica D
49
,
61
70
(
1991
).
9.
D.
Barkley
, “
Linear stability analysis of rotating spiral waves in excitable media
,”
Phys. Rev. Lett.
68
,
2090
2093
(
1992
).
10.
D.
Barkley
, “
Euclidean symmetry and the dynamics of rotating spiral waves
,”
Phys. Rev. Lett.
72
,
165
167
(
1994
).
11.
D.
Barkley
,
M.
Kness
, and
L. S.
Tuckerman
, “
Spiral-wave dynamics in a simple model of excitable media: The transition from simple to compound rotation
,”
Phys. Rev. A
42
,
2489
2492
(
1990
).
12.
A.
Ben-Tal
, A study of symmetric forced oscillators, Ph.D. thesis,
University of Auckland
,
2001
.
13.
P. C.
Bressloff
,
J. D.
Cowan
,
M.
Golubitsky
,
P. J.
Thomas
, and
M. C.
Wiener
, “
Geometric visual hallucinations, Euclidean symmetry, and the functional architecture of striate cortex
,”
Philos. Trans. R. Soc. London B
356
,
1
32
(
2001
).
14.
T.
Bröcker
and
T.
Tom Dieck
,
Representations of Compact Lie Groups
(
Springer
,
New York
1985
).
15.
H.
Broer
, “
Formal normal form theorems for vector fields and some consequences for bifurcations in the volume preserving case
,” in
Dynamical Systems and Turbulence, Warwick 1980
, edited by
D. A.
Rand
and
L. S.
Young
, Lecture Notes in Mathematics Vol. 898 (
Springer
,
New York
,
1981
), pp.
54
74
.
16.
P.-L.
Buono
, “
Models of central pattern generators for quadruped locomotion II: Secondary gaits
,”
J. Math. Biol.
42
,
327
346
(
2001
).
17.
P.-L.
Buono
and
M.
Golubitsky
, “
Models of central pattern generators for quadruped locomotion: I. primary gaits
,”
J. Math. Biol.
42
,
291
326
(
2001
).
18.
P.-L.
Buono
and
A.
Palacios
, “
A mathematical model of motorneuron dynamics in the heartbeat of the leech
,”
Physica D
188
,
292
313
(
2004
).
19.
J.
Burke
and
E.
Knobloch
, “
Homoclinic snaking: Structure and stability
,”
Chaos
17
,
037102
(
2007
).
20.
E.
Buzano
and
M.
Golubitsky
, “
Bifurcation on the hexagonal lattice and the planar Bénard problem
,”
Philos. Trans. R. Soc. London A
308
,
617
667
(
1983
).
21.
D.
Chillingworth
and
M.
Golubitsky
, “
Symmetry and pattern formation for a planar layer of nematic liquid crystal
,”
J. Math. Phys.
44
,
4201
4219
(
2003
).
22.
P.
Chossat
,
Y.
Demay
, and
G.
Iooss
, “
Interactions des modes azimutaux dans le problème de Couette-Taylor
,”
Arch. Ration. Mech. Anal.
99
(
3
),
213
248
(
1987
).
23.
P.
Chossat
and
M.
Golubitsky
, “
Symmetry increasing bifurcation of chaotic attractors
,”
Physica D
32
,
423
436
(
1988
).
24.
P.
Chossat
and
M.
Golubitsky
, “
Iterates of maps with symmetry
,”
SIAM J. Math. Anal.
19
,
1259
1270
(
1988
).
25.
P.
Chossat
and
G.
Iooss
, “
Primary and secondary bifurcations in the Couette-Taylor problem
,”
Jpn. J. Appl. Math.
2
,
37
68
(
1985
).
26.
P.
Chossat
and
G.
Iooss
,
The Couette-Taylor Problem, Applied Mathematical Science
(
Springer
,
1994
), Vol.
102
.
27.
G.
Cicogna
, “
Symmetry breakdown from bifurcations
,”
Lett. Nuovo Cimento
31
,
600
602
(
1981
).
28.
J. J.
Collins
and
I.
Stewart
, “
Hexapodal gaits and coupled nonlinear oscillator models
,”
Biol. Cybern.
68
,
287
298
(
1993
).
29.
J. J.
Collins
and
I.
Stewart
, “
Coupled nonlinear oscillators and the symmetries of animal gaits
,”
J. Nonlinear Sci.
3
,
349
392
(
1993
).
30.
J.
Cooke
and
E. C.
Zeeman
, “
A clock and wavefront model for control of the number of repeated structures during animal morphogenesis
,”
J. Theor. Biol.
58
,
455
476
(
1976
).
31.
J. D.
Crawford
,
E.
Knobloch
, and
H.
Reicke
, “
Period-doubling mode interactions with circular symmetry
,”
Physica D
44
,
340
396
(
1990
).
32.
J.
Damon
, The Unfolding And Determinacy Theorems for Subgroups of A and K Memoirs (
A.M.S. Providence
,
1984
), Vol.
306
.
33.
Y.
Demay
and
G.
Iooss
, “
Calcul des solutions bifurquées pour le probléme de Couette-Taylor avec les deux cylindres en rotation
,”
J. Mech. Theor. Appl.
,
193
216
(
1984
).
34.
C.
Diekman
and
M.
Golubitsky
, “
Network symmetry and binocular rivalry experiments
,”
J. Math. Neurosci.
4
,
12
(
2014
).
35.
C.
Diekman
,
M.
Golubitsky
,
T.
McMillen
, and
Y.
Wang
, “
Reduction and dynamics of a generalized rivalry network with two learned patterns
,”
SIAM J. Appl. Dyn. Syst.
11
,
1270
1309
(
2012
).
36.
C.
Diekman
,
M.
Golubitsky
, and
Y.
Wang
, “
Derived patterns in binocular rivalry networks
,”
J. Math. Neurosci.
3
,
6
(
2013
).
37.
R. C.
DiPrima
and
R. N.
Grannick
, “
A nonlinear investigation of the stability of flow between counter-rotating cylinders
,” in
Instability of Continuous Systems
, edited by
H.
Leipholz
(
Springer-Verlag
,
Berlin
,
1971
),
55
60
.
38.
T.
Elmhirst
and
M.
Golubitsky
, “
Nilpotent Hopf bifurcations in coupled cell systems
,”
SIAM J. Appl. Dyn. Syst.
5
,
205
251
(
2006
).
39.
C.
Elphick
,
E.
Tirapegui
,
M. E.
Brachet
,
P.
Coulet
, and
G.
Iooss
, “
A simple global characterization for normal forms of singular vector fields
,”
Physica D
29
,
95
127
(
1987
).
40.
G. B.
Ermentrout
and
J. D.
Cowan
, “
A mathematical theory of visual hallucination patterns
,”
Biol. Cybern.
34
,
137
150
(
1979
).
41.
B.
Fiedler
,
Global Bifurcation of Periodic Solutions with Symmetry
, Lecture Notes Mathematics (
Springer
,
Heidelberg
,
1988
), p.
1309
.
42.
B.
Fiedler
,
B.
Sandstede
,
A.
Scheel
, and
C.
Wulff
, “
Bifurcation from relative equilibria of noncompact group actions: Skew products, meanders and drifts
,”
Doc. Math.
1
,
479
505
(
1996
).
43.
B.
Fiedler
and
D. V.
Turaev
, “
Normal forms, resonances, and meandering tip motions near relative equilibria of Euclidean group actions
,”
Arch. Ration. Mech. Anal.
145
,
129
159
(
1998
).
44.
M. J.
Field
, “
Equivariant dynamical systems
,”
Trans. Am. Math. Soc.
259
,
185
205
(
1980
).
45.
M. J.
Field
and
M.
Golubitsky
,
Symmetry in Chaos
(
Oxford University Press
,
Oxford
,
1992
).
46.
M. J.
Field
,
M.
Golubitsky
, and
I.
Stewart
, “
Bifurcation on hemispheres
,”
J. Nonlinear Sci.
1
,
201
223
(
1991
).
47.
N.
Filipski
and
M.
Golubitsky
, “
The abelian Hopf H mod K theorem
,”
SIAM J. Appl. Dyn. Syst.
9
,
283
291
(
2010
).
48.
R.
FitzHugh
, “
Impulses and physiological states in theoretical models of nerve membrane
,”
Biophys. J.
1
,
445
466
(
1961
).
49.
P. P.
Gambaryan
,
How Mammals Run: Anatomical Adaptations
(
Wiley
,
New York
,
1974
).
50.
M.
Golubitsky
, “
An introduction to catastrophe theory and its applications
,”
SIAM Rev.
20
(
2
),
352
387
(
1978
).
51.
M.
Golubitsky
,
E.
Knobloch
, and
I.
Stewart
, “
Target patterns and spirals in planar reaction-diffusion systems
,”
J. Nonlinear Sci.
10
,
333
354
(
2000
).
52.
M.
Golubitsky
and
W. F.
Langford
, “
Classification and unfoldings of degenerate Hopf bifurcation
,”
J. Differ. Equations
41
,
375
415
(
1981
).
53.
M.
Golubitsky
and
W. F.
Langford
, “
Pattern formation and bistability in flows between counterrotating cylinders
,”
Physica D
32
,
362
392
(
1988
).
54.
M.
Golubitsky
,
V. G.
LeBlanc
, and
I.
Melbourne
, “
Meandering of the spiral tip: An alternative approach
,”
J. Nonlinear Sci.
7
,
557
586
(
1997
).
55.
M.
Golubitsky
,
L.
Matamba Messi
, and
L.
Spardy
(unpublished).
56.
M.
Golubitsky
,
M.
Nicol
, and
I.
Stewart
, “
Some curious phenomena in coupled cell systems
,”
J. Nonlinear Sci.
14
,
207
236
(
2004
).
57.
M.
Golubitsky
and
C.
Postlethwaite
, “
Feed-forward networks, center manifolds, and forcing
,”
Discrete Contin. Dyn. Syst. Ser. A
32
,
2913
2935
(
2012
).
58.
M.
Golubitsky
,
C.
Postlethwaite
,
L.-J.
Shiau
, and
Y.
Zhang
, “
The feed-forward chain as a filter amplifier motif
,”
Coherent Behavior in Neuronal Networks
, edited by
K.
Josić
,
M.
Matias
,
R.
Romo
, and
J.
Rubin
(
Springer
,
New York
,
2009
), pp.
95
120
.
59.
M.
Golubitsky
,
D.
Romano
, and
Y.
Wang
, “
Network periodic solutions: Full oscillation and rigid synchrony
,”
Nonlinearity
23
,
3227
3243
(
2010
).
60.
M.
Golubitsky
,
D.
Romano
, and
Y.
Wang
, “
Network periodic solutions: Patterns of phase-shift synchrony
,”
Nonlinearity
25
,
1045
1074
(
2012
).
61.
M.
Golubitsky
and
D. G.
Schaeffer
,
Singularities and Groups in Bifurcation Theory I
, Applied Mathematics Series (
Springer
,
New York
1985
), Vol.
51
.
62.
M.
Golubitsky
and
I.
Stewart
, “
Hopf bifurcation in the presence of symmetry
,”
Arch. Ration. Mech. Anal.
87
,
107
165
(
1985
).
63.
M.
Golubitsky
and
I. N.
Stewart
, “
Symmetry and stability in Taylor-Couette flow
,”
SIAM J. Math. Anal.
17
(
2
),
249
288
(
1986
).
64.
M.
Golubitsky
and
I.
Stewart
,
The Symmetry Perspective
(
Birkhuser
,
Basel
,
2002
).
65.
M.
Golubitsky
and
I.
Stewart
, “
Nonlinear dynamics of networks: The groupoid formalism
,”
Bull. Am. Math. Soc.
43
,
305
364
(
2006
).
66.
M.
Golubitsky
and
I.
Stewart
, “
Coordinate changes that preserve admissible maps for network dynamics
” (unpublished).
67.
M.
Golubitsky
and
I.
Stewart
, “
Homeostasis as a network invariant
,” (unpublished).
68.
M.
Golubitsky
,
I.
Stewart
,
P.-L.
Buono
, and
J. J.
Collins
, “
A modular network for legged locomotion
,”
Physica D
115
,
56
72
(
1998
).
69.
M.
Golubitsky
,
I.
Stewart
,
P.-L.
Buono
, and
J. J.
Collins
, “
Symmetry in locomotor central pattern generators and animal gaits
,”
Nature
401
,
693
695
(
1999
).
70.
M.
Golubitsky
,
I.
Stewart
, and
D. G.
Schaeffer
,
Singularities and Groups in Bifurcation Theory II
, Applied Mathematics Series Vol. 69 (
Springer
,
New York
,
1988
).
71.
M.
Golubitsky
,
I.
Stewart
, and
A.
Török
, “
Patterns of synchrony in coupled cell networks with multiple arrows
,”
SIAM J. Appl. Dyn. Syst.
4
,
78
100
(
2005
).
72.
M.
Gorman
,
C. F.
Hamill
,
M.
el-Hamdi
, and
K. A.
Robbins
, “
Rotating and modulated rotating states of cellular flames
,”
Combust. Sci. Technol.
98
,
25
35
(
1994
).
73.
M.
Gorman
,
M.
el-Hamdi
, and
K. A.
Robbins
, “
Experimental observations of ordered states of cellular flames
,”
Combust. Sci. Technol.
98
,
37
45
(
1994
).
74.
M.
Gorman
,
M.
el-Hamdi
, and
K. A.
Robbins
, “
Ratcheting motion of concentric rings in cellular flames
,”
Phys. Rev. Lett.
76
,
228
231
(
1996
).
75.
G. H.
Gunaratne
,
M.
el-Hamdi
,
M.
Gorman
, and
K. A.
Robbins
, “
Asymmetric cells and rotating rings in cellular flames
,”
Mod. Phys. Lett. B
10
,
1379
1387
(
1996
).
76.
J.
Guckenheimer
and
P.
Holmes
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
(
Springer
,
New York
,
1983
).
77.
J. K.
Hale
,
Infinite-Dimensional Dynamical Systems
(
Springer
,
New York
,
1993
).
78.
B. D.
Hassard
,
N. D.
Kazarinoff
, and
Y.-H.
Wan
,
Theory and Applications of Hopf Bifurcation
, London Mathematical Society Lecture Notes Vol. 41 (
Cambridge University Press
,
Cambridge
,
1981
).
79.
F.
Hoppensteadt
,
An Introduction to the Mathematics of Neurons
(
Cambridge University Press
,
Cambridge
,
1986
).
80.
K.
Ikeda
and
K.
Murota
,
Bifurcation Theory for Hexagonal Agglomeration in Economic Geography
(
Springer
,
Japan
,
2014
).
81.
W.
Jahnke
,
W. E.
Skaggs
, and
A. T.
Winfree
, “
Chemical vortex dynamics in the Belousov-Zhabotinsky reaction and in the two-variable Oregonator model
,”
J. Phys. Chem.
93
,
740
749
(
1989
).
82.
K.
Josíc
and
A.
Török
, “
Network structure and spatiotemporally symmetric dynamics
,”
Physica D
224
,
52
68
(
2006
).
83.
A.
Katok
and
B.
Hasselblatt
,
Introduction to the Modern Theory of Dynamical Systems
(
Cambridge University Press
,
Cambridge
,
1995
).
84.
K.
Kirchgässner
, “
Exotische Lösungen Bénardschen problems
,”
Math. Methods Appl. Sci.
1
,
453
467
(
1979
).
85.
I.
Kovács
,
T. V.
Papathomas
,
M.
Yang
, and
A.
Fehér
, “
When the brain changes its mind: Interocular grouping during binocular rivalry
,”
Proc. Nat. Acad. Sci. U. S. A.
93
,
15508
15511
(
1996
).
86.
M.
Krupa
, “
Bifurcations from relative equilibria
,”
SIAM J. Math. Anal.
21
,
1453
1486
(
1990
).
87.
W. F.
Langford
,
R.
Tagg
,
E.
Kostelich
,
H. L.
Swinney
, and
M.
Golubitsky
, “
Primary instability and bicriticality in flow between counterrotating cylinders
,”
Phys. Fluids
31
,
776
785
(
1987
).
88.
V. M.
Lauschke
,
C. D.
Tsiairis
,
P.
François
, and
A.
Aulehla
, “
Scaling of embryonic patterning based on phase-gradient encoding
,”
Nature
493
,
101
105
(
2013
).
89.
G.
Li
,
Q.
Ouyang
,
V.
Petrov
, and
H. L.
Swinney
, “
Transition from simple rotating chemical spirals to meandering and traveling spirals
,”
Phys. Rev. Lett.
77
,
2105
2108
(
1996
).
90.
N. J.
McCullen
,
T.
Mullin
, and
M.
Golubitsky
, “
Sensitive signal detection using a feed-forward oscillator network
,”
Phys. Rev. Lett.
98
,
254101
(
2007
).
91.
J.
Montaldi
,
R. M.
Roberts
, and
I.
Stewart
, “
Nonlinear normal modes of symmetric Hamiltonian systems
,” in
Structure Formation in Physics
, edited by
G.
Dangelmayr
and
W.
Güttinger
(
Springer
,
Berlin
,
1987
), pp.
354
371
.
92.
J.
Montaldi
,
R. M.
Roberts
, and
I.
Stewart
, “
Periodic solutions near equilibria of symmetric Hamiltonian systems
,”
Philos. Trans. R. Soc. London A
325
,
237
293
(
1988
).
93.
J.
Montaldi
,
R. M.
Roberts
, and
I.
Stewart
, “
Existence of nonlinear normal modes of symmetric Hamiltonian systems
,”
Nonlinearity
3
,
695
730
(
1990
).
94.
J.
Montaldi
,
R. M.
Roberts
, and
I.
Stewart
, “
Stability of nonlinear normal modes of symmetric Hamiltonian systems
,”
Nonlinearity
3
,
731
772
(
1990
).
95.
M.
Munz
and
W.
Weidlich
, “
Settlement formation—Part II: Numerical simulation
,”
Ann. Reg. Sci.
24
,
177
196
(
1990
).
96.
J.
Murray
,
Mathematical Biology
(
Springer
,
Berlin
,
1989
).
97.
E.
Muybridge
,
Muybridge's Complete Human and Animal Locomotion: All 781 Plates from the 1887 Animal Locomotion
(
Dover
,
New York
,
1979
).
98.
J. S.
Nagumo
,
S.
Arimoto
, and
S.
Yoshizawa
, “
An active pulse transmission line simulating nerve axon
,”
Proc. IRE
50
,
2061
2071
(
1962
).
99.
A.
Palacios
,
G. H.
Gunaratne
,
M.
Gorman
, and
K. A.
Robbins
, “
Cellular pattern formation in circular domains
,”
Chaos
7
,
463
475
(
1997
).
100.
C. A.
Pinto
and
M.
Golubitsky
, “
Central pattern generators for bipedal locomotion
,”
J. Math. Biol.
53
,
474
489
(
2006
).
101.
T.
Poston
and
I.
Stewart
,
Catastrophe Theory and Its Applications
, Surveys and Reference Works in Mathematical Vol. 2 (
Pitman
,
London
,
1978
).
102.
B.
Rink
and
J.
Sanders
, “
Coupled cell networks: Semigroups, Lie algebras and normal forms
,”
Trans. Am. Math. Soc.
367
,
3509
(
2014
).
103.
E. C.
Rosas
, “
Local and global symmetries of networks of dynamical systems
,” Ph.D. thesis,
University of Warwick
,
2009
.
104.
D.
Ruelle
, “
Bifurcations in the presence of a symmetry group
,”
Arch. Ration. Mech. Anal.
51
,
136
152
(
1973
).
105.
B.
Sandstede
,
A.
Scheel
, and
C.
Wulff
, “
Center-manifold reduction for spiral waves
,”
C. R. Acad. Sci., Serié I
324
,
153
158
(
1997
).
106.
D. H.
Sattinger
, “
Group representation theory, bifurcation theory and pattern formation
,”
J. Funct. Anal.
28
,
58
101
(
1978
).
107.
D. H.
Sattinger
,
Group Theoretic Methods in Bifurcation Theory
, Lecture Notes in Mathematics Vol. 762 (
Springer-Verlag
,
1979
).
108.
D. H.
Sattinger
and
O. L.
Weaver
,
Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics
(
Springer
,
New York
,
1986
).
109.
M.
Silber
,
D. P.
Tse
,
A. M.
Rucklidge
, and
R. B.
Hoyle
, “
Spatial period-multiplying instabilities of hexagonal Faraday waves
,”
Physical D
146
,
367
387
(
2000
).
110.
F.
Simonelli
and
J. P.
Gollub
, “
Surface wave mode interactions: Effects of symmetry and degeneracy
,”
J. Fluid Mech.
199
,
471
494
(
1989
).
111.
S.
Smale
, “
Differentiable dynamical systems
,”
Bull. Amer. Math. Soc.
73
,
747
817
(
1967
).
112.
S.
Smale
, “
Review of Catastrophe Theory: Selected Papers 1972–1977 by E. C. Zeeman
,”
Bull. Am. Math. Soc.
84
,
1360
1368
(
1978
).
113.
I.
Stewart
and
M.
Golubitsky
, “
Synchrony-breaking bifurcations at a simple real eigenvalue for regular networks 1: 1-dimensional cells
,”
SIAM J. Appl. Dyn. Syst.
10
,
1404
1442
(
2011
).
114.
I.
Stewart
, “
Synchrony-breaking bifurcations at a simple real eigenvalue for regular networks 2: Higher-dimensional cells
,”
SIAM J. Appl. Dyn. Syst.
13
,
129
156
(
2014
).
115.
I.
Stewart
,
M.
Golubitsky
, and
M.
Pivato
, “
Symmetry groupoids and patterns of synchrony in coupled cell networks
,”
SIAM J. Appl. Dyn. Syst.
2
,
609
646
(
2003
).
116.
I.
Stewart
and
M.
Parker
, “
Periodic dynamics of coupled cell networks I: Rigid patterns of synchrony and phase relations
,”
Dyn. Syst.
22
,
389
450
(
2007
).
117.
I.
Stewart
and
M.
Parker
, “
Periodic dynamics of coupled cell networks II: Cyclic symmetry
,”
Dyn. Syst.
23
,
17
41
(
2008
).
118.
R.
Tagg
,
W. S.
Edwards
,
H. L.
Swinney
, and
P. S.
Marcus
, “
Nonlinear standing waves in Couette-Taylor flow
,”
Phys Rev A
39
(
7
),
3734
3738
(
1989
).
119.
R.
Tagg
,
D.
Hirst
, and
H. L.
Swinney
, “
Critical dynamics near the spiral-Taylor-vortex transition
,”
unpublished report
, University of Texas, Austin, 1988.
120.
R.
Thom
,
Structural Stability and Morthogenesis
(
Benjamin
,
Reading, MA
,
1975
).
121.
A. M.
Turing
, “
The chemical basis of morphogenesis
,”
Philos. Trans. R. Soc. London B
237
,
32
72
(
1952
).
122.
A.
Vanderbauwhede
, “
Local bifurcation and symmetry
,” Habilitation thesis,
Rijksuniversiteit Gent
,
1980
.
123.
A.
Vanderbauwhede
,
M.
Krupa
, and
M.
Golubitsky
, “
Secondary bifurcations in symmetric systems
,” in
Differential Equations
, edited by
C. M.
Dafermos
,
G.
Ladas
, and
G.
Papanicolau
, Lecture Notes Pure Applied Mathematics Vol. 118 (
Dekker
,
New York
,
1989
), pp.
709
716
.
124.
A.
Vutha
and
M.
Golubitsky
, “
Normal forms and unfoldings of singular strategy functions
,”
Dyn. Games Appl.
(published online, 2014).
125.
H. R.
Wilson
, “
Requirements for conscious visual processing
,” in
Cortical Mechanisms of Vision
, edited by
M.
Jenkin
and
L.
Harris
(
Cambridge University Press
,
Cambridge
,
2009
), pp.
399
417
.
126.
A. T.
Winfree
, “
Scroll-shaped waves of chemical activity in three dimensions
,”
Science
181
,
937
939
(
1973
).
127.
C.
Wulff
, “
Theory of meandering and drifting spiral waves in reaction-diffusion systems
,” Ph.D. thesis,
Freie Universität Berlin
,
1996
.
128.
E. C.
Zeeman
,
Catastrophe Theory: Selected Papers 1972–1977
(
Addison-Wesley
,
London
,
1977
).
You do not currently have access to this content.