Floods are known to exhibit self-similarity and follow scaling laws that form the basis of regional flood frequency analysis. However, the relationship between basin attributes and the scaling behavior of floods is still not fully understood. Identifying these relationships is essential for drawing connections between hydrological processes in a basin and the flood response of the basin. The existing studies mostly rely on simulation models to draw these connections. This paper proposes a new methodology that draws connections between basin attributes and the flood scaling exponents by using observed data. In the proposed methodology, region-of-influence approach is used to delineate homogeneous regions for each gaging station. Ordinary least squares regression is then applied to estimate flood scaling exponents for each homogeneous region, and finally stepwise regression is used to identify basin attributes that affect flood scaling exponents. The effectiveness of the proposed methodology is tested by applying it to data from river basins in the United States. The results suggest that flood scaling exponent is small for regions having (i) large abstractions from precipitation in the form of large soil moisture storages and high evapotranspiration losses, and (ii) large fractions of overland flow compared to base flow, i.e., regions having fast-responding basins. Analysis of simple scaling and multiscaling of floods showed evidence of simple scaling for regions in which the snowfall dominates the total precipitation.

1.
Ayalew
,
T. B.
,
Krajewski
,
W. F.
,
Mantilla
,
R.
, and
Small
,
S. J.
, “
Exploring the effects of hillslope-channel link dynamics and excess rainfall properties on the scaling structure of peak-discharge
,”
Adv. Water Resour.
64
,
9
20
(
2014
).
2.
Bishop
,
C. M.
,
Pattern Recognition and Machine Learning
(
Springer
,
2006
).
3.
Burn
,
D. H.
, “
Evaluation of regional flood frequency analysis with a region of influence approach
,”
Water Resour. Res.
26
(
10
),
2257
2265
, doi: (
1990a
).
4.
Burn
,
D. H.
, “
An appraisal of the ‘region of influence’ approach to flood frequency analysis
,”
Hydrol. Sci. J.
35
(
2
),
149
165
(
1990b
).
5.
Cristianini
,
N.
and
Taylor
,
J. S.
,
An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods
(
Cambridge University Press
,
2000
).
6.
Cunderlik
,
J. M.
and
Burn
,
D. H.
, “
The use of flood regime information in regional flood frequency analysis
,”
Hydrol. Sci. J.
47
(
1
),
77
92
(
2002
).
7.
Das
,
S.
and
Cunnane
,
C.
, “
Performance of flood frequency pooling analysis in a low CV context
,”
Hydrol. Sci. J.
57
(
3
),
433
444
(
2012
).
8.
Draper
,
N. R.
and
Smith
,
H.
,
Applied Regression Analysis
(
Wiley Interscience
,
1998
), pp.
307
312
.
9.
Falcone
,
J. A.
,
Carlisle
,
D. M.
,
Wolock
,
D. M.
, and
Meador
,
M. R.
, “
GAGES: A stream gage database for evaluating natural and altered flow conditions in the conterminous United States: Ecological Archives E091-045
,”
Ecology
91
(
2
),
621
(
2010
).
10.
Furey
,
P. R.
and
Gupta
,
V. K.
, “
Effects of excess rainfall on the temporal variability of observed peak-discharge power laws
,”
Adv. Water Resour.
28
(
11
),
1240
1253
(
2005
).
11.
Furey
,
P. R.
and
Gupta
,
V. K.
, “
Diagnosing peak-discharge power laws observed in rainfall-runoff events in Goodwin Creek experimental watershed
,”
Adv. Water Resour.
30
(
11
),
2387
2399
(
2007
).
12.
Goodrich
,
D. C.
,
Lane
,
L. J.
,
Shillito
,
R. M.
,
Miller
,
S. N.
,
Syed
,
K. H.
, and
Woolhiser
,
D. A.
, “
Linearity of basin response as a function of scale in a semiarid watershed
,”
Water Resour. Res.
33
(
12
),
2951
2965
, doi: (
1997
).
13.
Griffis
,
V. W.
and
Stedinger
,
J. R.
, “
Log-Pearson type 3 distribution and its application in flood frequency analysis. I: Distribution characteristics
,”
J. Hydrol. Eng.
12
(
5
),
482
491
(
2007
).
14.
Gupta
,
V. K.
,
Castro
,
S. L.
, and
Over
,
T. M.
, “
On scaling exponents of spatial peak flows from rainfall and river network geometry
,”
J. Hydrol.
187
(
1–2
),
81
104
(
1996
).
15.
Gupta
,
V. K.
and
Dawdy
,
D. R.
, “
Physical interpretations of regional variations in the scaling exponents of flood quantiles
,”
Hydrol. Processes
9
(
3–4
),
347
361
(
1995
).
16.
Gupta
,
V. K.
,
Troutman
,
B. M.
, and
Dawdy
,
D. R.
, “
Towards a nonlinear geophysical theory of floods in river networks: An overview of 20 years of progress
,”
Nonlinear Dynamics in the Geosciences
(
Springer, New York
,
2007
), pp.
121
151
.
17.
Gupta
,
V. K.
and
Waymire
,
E.
, “
Multiscaling properties of spatial rainfall and river flow distributions
,”
J. Geophys. Res.
95
(
D3
),
1999
2009
, doi: (
1990
).
18.
Haddad
,
K.
,
Rahman
,
A.
, and
Stedinger
,
J. R.
, “
Regional flood frequency analysis using Bayesian generalized least squares: A comparison between quantile and parameter regression techniques
,”
Hydrol. Processes
26
(
7
),
1008
1021
(
2012
).
19.
Hamon
,
W. R.
, “
Estimating potential evapotranspiration
,”
Proc. Am. Soc. Civ. Eng., Hydraul. Div.
87
(
HY3
),
107
120
(
1961
).
20.
Hosking
,
J. R. M.
and
Wallis
,
J. R.
,
Regional Frequency Analysis: An Approach Based on L-Moments
(
Cambridge University Press
,
New York, USA
,
1997
).
21.
Inter-Agency Committee on Water Data (IACWD)
, “
Guidelines for determining flood flow frequency—Bulletin 17B
,”
Hydrology Subcommittee
,
Washington, D.C.
,
1982
.
22.
Ishak
,
E.
,
Haddad
,
K.
,
Zaman
,
M.
, and
Rahman
,
A.
, “
Scaling property of regional floods in New South Wales Australia
,”
Nat. Hazards
58
(
3
),
1155
1167
(
2011
).
23.
Jaafar
,
W. Z. W.
and
Han
,
D.
, “
Variable selection using the gamma test forward and backward selections
,”
J. Hydrol. Eng.
17
(
1
),
182
190
(
2012
).
24.
Jothityangkoon
,
C.
and
Sivapalan
,
M.
, “
Temporal scales of rainfall-runoff processes and spatial scaling of flood peaks: Space-time connection through catchment water balance
,”
Adv. Water Resour.
24
(
9–10
),
1015
1036
(
2001
).
25.
Kroll
,
C. N.
,
Luz
,
J.
,
Allen
,
B.
, and
Vogel
,
R. M.
, “
Developing a watershed characteristics database to improve low streamflow prediction
,”
J. Hydrol. Eng.
9
(
2
),
116
125
(
2004
).
26.
Kroll
,
C. N.
,
Rapant
,
D. F.
, and
Vogel
,
R. M.
, “
The prediction of hydrologic statistics in nested watersheds across the United States
,” in
Water Environmental and Water Resources Congress
(
ASCE, Portland
,
Oregon
,
2014
), pp.
2326
2335
.
27.
Lima
,
C. H. R.
and
Lall
,
U.
, “
Spatial scaling in a changing climate: A hierarchical Bayesian model for non-stationary multi-site annual maximum and monthly streamflow
,”
J. Hydrol.
383
(
3–4
),
307
318
(
2010
).
28.
Menabde
,
M.
and
Sivapalan
,
M.
, “
Linking space-time variability of river runoff and rainfall fields: A dynamic approach
,”
Adv. Water Resour.
24
(
9–10
),
1001
1014
(
2001
).
29.
Ogden
,
F. L.
and
Dawdy
,
D. R.
, “
Peak discharge scaling in small Hortonian watershed
,”
J. Hydrol. Eng.
8
(
2
),
64
73
(
2003
).
30.
Pandey
,
G. R.
, “
Assessment of scaling behavior of regional floods
,”
J. Hydrol. Eng.
3
(
3
),
169
173
(
1998
).
31.
Pandey
,
G. R.
and
Nguyen
,
V.-T.-V.
, “
A comparative study of regression based methods in regional flood frequency analysis
,”
J. Hydrol.
225
(
1–2
),
92
101
(
1999
).
32.
Robinson
,
J. S.
and
Sivapalan
,
M.
, “
Temporal scales and hydrological regimes: Implications for flood frequency scaling
,”
Water Resour. Res.
33
(
12
),
2981
2999
, doi: (
1997
).
33.
Schölkopf
,
B.
and
Smola
,
A. J.
,
Learning with Kernels
(
MIT Press
,
Cambridge
,
2002
).
34.
Skaugen
,
T.
and
Vaeringstad
,
T.
, “
A methodology for regional flood frequency estimation based on scaling properties
,”
Hydrol. Processes
19
(
7
),
1481
1495
(
2005
).
35.
Slack
,
J. R.
and
Landwehr
,
J. M.
, “
Hydro-climatic data network: A U.S. Geological Survey streamflow data set for the United States for the study of climatic variations, 1874–1988
,”
U.S. Geological Survey Open-File Report 92-129
(
1992
).
36.
Srinivas
,
V. V.
,
Tripathi
,
S.
,
Rao
,
A. R.
, and
Govindaraju
,
R. S.
, “
Regional flood frequency analysis by combining self-organizing feature map and fuzzy clustering
,”
J. Hydrol.
348
(
1–2
),
148
166
(
2008
).
37.
Stedinger
,
J. R.
and
Griffis
,
V. W.
, “
Flood frequency analysis in the United States: Time to update
,”
J. Hydrol. Eng.
13
(
4
),
199
204
(
2008
).
38.
Tripathi
,
S.
,
Srinivas
,
V. V.
, and
Nanjundiah
,
R. S.
, “
Downscaling of precipitation for climate change scenarios: A support vector machine approach
,”
J. Hydrol.
330
(
3–4
),
621
640
(
2006
).
39.
Vapnik
,
V. N.
,
The Nature of Statistical Learning Theory
(
Springer Verlag
,
New York
,
1995
).
40.
Vogel
,
R. M.
and
Sankarasubramanian
,
A.
, “
Spatial scaling properties of annual streamflow in the United States
,”
Hydrol. Sci. J.
45
(
3
),
465
476
(
2000
).
41.
Yue
,
S.
and
Gan
,
T. Y.
, “
Simple scaling properties of Canadian annual average streamflow
,”
Adv. Water Resour.
27
(
5
),
481
495
(
2004
).
42.
Yue
,
S.
and
Gan
,
T. Y.
, “
Scaling properties of Canadian flood flows
,”
Hydrol. Processes
23
(
2
),
245
258
(
2009
).
43.
Yue
,
S.
and
Wang
,
C. Y.
, “
Scaling of Canadian low flows
,”
Stochastic Environ. Res. Risk Assess.
18
(
5
),
291
305
(
2004
).
44.
Zrinji
,
Z.
and
Burn
,
D. H.
, “
Flood frequency analysis for ungauged sites using a region of influence approach
,”
J. Hydrol.
153
(
1–4
),
1
21
(
1994
).
You do not currently have access to this content.