The conditions under which depth-averaged two-dimensional (2D) hydrodynamic equations system as an initial-boundary value problem (IBVP) becomes self-similar are investigated by utilizing one-parameter Lie group of point scaling transformations. Self-similarity conditions due to the 2D k-ε turbulence model are also investigated. The self-similarity conditions for the depth-averaged 2D hydrodynamics are found for the flow variables including the time, the longitudinal length, the transverse length, the water depth, the flow velocities in x- and y-directions, the bed shear stresses in x- and y-directions, the bed shear velocity, the Manning's roughness coefficient, the kinematic viscosity of the fluid, the eddy viscosity, the turbulent kinetic energy, the turbulent dissipation, and the production and the source terms in the k-ε model. By the numerical simulations, it is shown that the IBVP of depth-averaged 2D hydrodynamic flow process in a prototype domain can be self-similar with that of a scaled domain. In fact, by changing the scaling parameter and the scaling exponents of the length dimensions, one can obtain several different scaled domains. The proposed scaling relations obtained by the Lie group scaling approach may provide additional spatial, temporal, and economical flexibility in setting up physical hydraulic models in which two-dimensional flow components are important.

1.
Bluman
,
G. W.
and
Anco
,
S. C.
,
Symmetry and Integration Methods for Differential Equations
, Applied Mathematical Sciences Vol. 154 (
Springer
,
New York
,
2002
).
2.
Bluman
,
C. E.
and
Cole
,
J. D.
,
Similarity Methods for Differential Equations
(
Springer-Verlag
,
New York
,
1974
).
3.
Buckingham
,
E.
, “
On physically similar systems—illustrations of the use of dimensional equations
,”
Phys. Rev.
4
,
345
376
(
1914
).
4.
Carr
,
K.
,
Ercan
,
A.
, and
Kavvas
,
M. L.
, “
Scaling and self-similarity of one-dimensional unsteady suspended sediment transport with emphasis on unscaled sediment material properties
,”
J. Hydraul. Eng.
10.1061/(ASCE)HY.1943-7900.0000994,
04015003
(
2015
).
5.
Chaudhry
,
M. H.
,
Open Channel Flow
(
Prentice Hall
,
Englewood Cliffs, NJ
,
1993
).
6.
Ettema
,
R.
,
Arndt
,
R.
,
Roberts
,
P.
, and
Wahl
,
T.
, “
Hydraulic modeling—concepts and practice
,”
ASCE manuals and reports on engineering practice No. 97. ASCE
,
Reston, VA
,
2000
.
7.
Ercan
,
A.
,
Kavvas
,
M. L.
, and
Haltas
,
I.
, “
Scaling and self-similarity in one-dimensional unsteady open channel flow
,”
Hydrol. Processes
28
(
5
),
2721
2737
(
2014
).
8.
Haltas
,
I.
and
Kavvas
,
M. L.
, “
Scale invariance and self-similarity in hydrologic processes in space and time
,”
J. Hydrol. Eng.
16
(
1
),
51
63
(
2011a
).
9.
Haltas
,
I.
and
Kavvas
,
M. L.
, “
Scale invariance and self-similarity in kinematic wave overland flow in space and time
,”
Hydrol. Processes
25
(
23
),
3659
3665
(
2011b
).
10.
Hansen
,
A. G.
,
Similarity Analysis of Boundary Value Problems in Engineering
(
Prentice Hall Inc.
,
NJ
,
1964
).
11.
Heller
,
V.
, “
Scale effects in physical hydraulic engineering models
,”
J. Hydraul. Res.
49
(
3
),
293
306
(
2011
).
12.
Hurst
,
H. E.
, “
Long-term storage capacity of reservoirs
,”
Trans. Am. Soc. Civil Eng.
116
,
770
779
(
1951
).
13.
Ibragimov
,
N. H.
,
Handbook of Lie Group Analysis of Differential Equations
, Symmetries, Exact Solutions, and Conservation Laws Vol. I (
CRC Press
,
Boca Roton, USA
,
1994
).
14.
Ibragimov
,
N. H.
,
Handbook of Lie Group Analysis of Differential Equations
, Applications in Engineering and Physical Sciences Vol. II (
CRC Press
,
Boca Roton, USA
,
1995
).
15.
Jia
,
Y.
and
Wang
,
S. S. Y.
, “
Numerical model for channel flow and morphological change studies
,”
J. Hydraul. Eng.
125
(
9
),
924
933
(
1999
).
16.
Jia
,
Y.
,
Wang
,
S. S. Y.
, and
Xu
,
Y.
, “
Validation and application of a 2D model to channels with complex geometry
,”
Int. J. Comput. Eng. Sci.
3
(
1
),
57
71
(
2002
).
17.
Jia
,
Y.
,
Chao
,
X.
,
Zhang
,
Y.
, and
Zhu
,
T.
, “
Technical Manual of CCHE2D, version 4.1
,”
NCCHE-TR-02-2013, Technical Report, National Center for Computational Hydroscience and Engineering, Oxford, MS
,
2013
.
18.
Kolmogorov
,
A. N.
, “
The local structure of turbulence in incompressible viscous fluid for very large Reynolds number
,”
C.R. Acad. Sci. USSR
30
,
301
(
1941
).
19.
Kuipers
,
J.
and
Vreugdenhill
,
C. B.
, “
Calculations of two-dimensional horizontal flow
,”
Rep. S163. Part I. Delft Hydraulics Lab. Delft, The Netherlands
,
1973
.
20.
Lovejoy
,
S.
and
Schertzer
,
D.
, “
Generalized scale invariance in the atmosphere and fractal models of rain
,”
Water Resour. Res.
21
(
8
),
1233
1250
, doi: (
1985
).
21.
Lovejoy
,
S.
and
Schertzer
,
D.
, “
Scale invariance, symmetries, fractals, and stochastic simulations of atmospheric phenomena
,”
Bull. Am. Meteorol. Soc.
67
,
21
32
(
1986
).
22.
Mandelbrot
,
B. B.
, “
How long is the coast of Britain? Statistical self-similarity and fractional dimension
,”
Science
156
,
636
638
(
1967
).
23.
Mandelbrot
,
B. B.
,
The Fractal Geometry of Nature
(
W. H. Freeman and Co.
,
San Francisco
,
1983
).
24.
Mandelbrot
,
B. B.
and
Wallis
,
J. R.
, “
Noah, Joseph and operational hydrology
,”
Water Resour. Res.
4
,
909
920
, doi: (
1968
).
25.
Martins
,
R.
,
Recent Advances in Hydraulic Physical Modelling
, NATO ASI Series E: Applied Sciences Vol. 165 (
Kluwer Academic Publishers
,
Dordrecht, the Netherlands
,
1989
).
26.
Meneveau
,
C.
and
Katz
,
J.
, “
Scale-invariance and turbulence models for large-eddy simulation
,”
Annu. Rev. Fluid Mech.
32
,
1
32
(
2000
).
27.
Molls
,
T. R.
, “
A general two-dimensional free-surface flow model for solving the depth-averaged equations using an implicit ADI scheme
,” Ph.D. thesis (
Washington State University
,
Pullman, Wash
,
1992
).
28.
Neuman
,
S. P.
, “
Universal scaling of hydraulic conductivities and dispersivities in geologic media
,”
Water Resour. Res.
26
(
8
),
1749
1758
, doi: (
1990
).
29.
Polyanin
,
A. D.
and
Manzhirov
,
A. V.
,
Handbook of Mathematics for Engineers and Scientists
, 1st ed. (
Chapman & Hall/CRC
:
FL, USA
,
2006
).
30.
Rastogi
,
A. K.
and
Rodi
,
W.
, “
Predictions of heat and mass transfer in open channels
,”
J. Hydraul. Div.
104
(
HY3
),
397
420
(
1978
).
31.
Rayleigh
,
J. W. S.
, “
On the question of the stability of the flow of liquids
,”
Philos. Mag.
34
,
59
70
(
1892
).
32.
Rieu
,
M.
and
Sposito
,
G.
, “
Fractal fragmentation, soil porosity, and soil water properties. I. Theory
,”
Soil Sci. Soc. Am. J.
55
,
1231
1238
(
1991
).
33.
Rodi
,
W.
,
Turbulence Models and Their Applications in Hydraulics
, 3rd ed. (
IAHR Monograph
,
Rotterdam, The Netherlands
,
1993
).
34.
Rodriguez-Iturbe
,
I.
and
Rinaldo
,
A.
,
Fractal River Basins: Chance and Self-Organization
(
Cambridge University Press
,
Cambridge
,
1997
).
35.
Rubio
,
M. A.
,
Edwards
,
C. A.
,
Dougherty
,
A.
, and
Gollub
,
J. P.
, “
Self-affine fractal interfaces from immiscible displacement in porous media
,”
Phys. Rev. Lett.
63
(
16
),
1685
1688
(
1989
).
36.
Sedov
,
L. I.
,
Similarity and Dimensional Methods in Mechanics
(
Academic Press
,
New York
,
1959
).
37.
Turcotte
,
D. L.
, “
Fractals in geology and geophysics
,”
Pure Appl. Geophys.
131
(
1–2
),
171
196
(
1989
).
38.
Yalin
,
M. S.
,
Theory of Hydraulic Models
(
Macmillan Press
,
London
,
1971
).
39.
Wu
,
W.
,
Computational River Dynamics
(
Taylor & Francis Group
,
London, UK
,
2008
).
You do not currently have access to this content.