Scaling relationships are needed as measurements and desired predictions are often not available at concurrent spatial support volumes or temporal discretizations. Surface soil moisture values of interest to hydrologic studies are estimated using ground based measurement techniques or utilizing remote sensing platforms. Remote sensing based techniques estimate field-scale surface soil moisture values, but are unable to provide the local-scale soil moisture information that is obtained from local measurements. Further, obtaining field-scale surface moisture values using ground-based measurements is exhaustive and time consuming. To bridge this scale mismatch, we develop analytical expressions for surface soil moisture based on sharp-front approximation of the Richards equation and assumed log-normal distribution of the spatial surface saturated hydraulic conductivity field. Analytical expressions for field-scale evolution of surface soil moisture to rainfall events are utilized to obtain aggregated and disaggregated response of surface soil moisture evolution with knowledge of the saturated hydraulic conductivity. The utility of the analytical model is demonstrated through numerical experiments involving 3-D simulations of soil moisture and Monte-Carlo simulations for 1-D renderings—with soil moisture dynamics being represented by the Richards equation in each instance. Results show that the analytical expressions developed here show promise for a principled way of scaling surface soil moisture.

1.
Anctil
,
F.
,
Mathieu
,
R.
,
Parent
,
L.-E.
,
Viau
,
A. A.
,
Sbih
,
M.
, and
Hessami
,
M.
, “
Geostatistics of near-surface moisture in bare cultivated organic soils
,”
J. Hydrol.
260
,
30
37
(
2002
).
2.
Baghdadi
,
N.
,
Cerdan
,
O.
,
Zribi
,
M.
,
Auzet
,
V.
,
Darboux
,
F.
,
Hajj
,
M. El.
, and
Kheir
,
R. B.
, “
Operational performance of current synthetic aperture radar sensors in mapping soil surface characteristics in agricultural environments: Application to hydrological and erosion modelling
,”
Hydrol. Processes
22
,
9
20
(
2008
).
3.
Bárdossy
,
A.
and
Lehmann
,
W.
, “
Spatial distribution of soil moisture in a small catchment. Part 1: Geostatistical analysis
,”
J. Hydrol.
206
,
1
15
(
1998
).
4.
Bell
,
K. R.
,
Blanchard
,
B. J.
,
Schmugge
,
T. J.
, and
Witczak
,
M. W.
, “
Analysis of surface moisture variations within large field sites
,”
Water Resour. Res.
16
,
796
810
, doi: (
1980
).
5.
Beven
,
K. J.
, “
Linking parameters across scales: Subgrid parameterizations and scale dependent hydrological models
,” in
Advances in Hydrological Processes: Scale Issue in Hydrological Modelling
, edited by
J. D.
Kalma
and
M.
Sivapalan
(
Wiley
,
Chichester
,
1995
), pp.
263
281
.
6.
Bi
,
H.
,
Li
,
X.
,
Liu
,
X.
,
Guo
,
M.
, and
Li
,
J.
, “
A case study of spatial heterogeneity of soil moisture in the Loess Plateau, Western China: A geostatistical approach
,”
Int. J. Sediment. Res.
24
(
1
),
63
73
(
2009
).
7.
Bindlish
,
R.
,
Jackson
,
T.
,
Sun
,
R.
,
Cosh
,
M.
,
Yueh
,
S.
, and
Dinardo
,
S.
, “
Combined passive and active microwave observations of soil moisture during CLASIC
,”
IEEE Geosci. Remote Sens. Lett.
6
(
4
),
644
648
(
2009
).
8.
Blöschl
,
G.
,
Grayson
,
R. B.
, and
Sivapalan
,
M.
, “
On the representative elementary area (REA) concept and its utility for distributed rainfall–runoff modelling
,” in
Scale Issues in Hydrological Modelling. Advances in Hydrological Processes
, edited by
J. D.
Kalma
and
M.
Sivapalan
(
Wiley
, Sussex,
England
,
1995
), pp.
71
88
.
9.
Blumberg
,
D. G.
,
Ronen
,
G.
,
Ben-Asher
,
J.
,
Freilikher
,
V.
,
Vulfson
,
L. D.
, and
Kotlyar
,
A. L.
, “
Utilizing a P-band scatterometer to assess soil water saturation percent of a bare sandy soil
,”
J. Hydrol.
318
,
374
378
(
2006
).
10.
Bresler
,
E.
and
Dagan
,
G.
, “
Unsaturated flow in spatially variable fields, 3, Application of water flow models to various fields
,”
Water Resour. Res.
19
(
2
),
429
435
, doi: (
1983
).
11.
Brocca
,
L.
,
Melone
,
F.
,
Moramarco
,
T.
, and
Morbidelli
,
R.
, “
Soil moisture temporal stability over experimental areas of central Italy
,”
Geoderma
148
(
3–4
),
364
374
(
2009
).
12.
Brocca
,
L.
,
Melone
,
F.
,
Moramarco
,
T.
, and
Morbidelli
,
R.
, “
Spatial-temporal variability of soil moisture and its estimation across scales
,”
Water Resour. Res.
46
,
W02516
, doi: (
2010
).
13.
Brocca
,
L.
,
Morbidelli
,
R.
,
Melone
,
F.
, and
Moramarco
,
T.
, “
Soil moisture spatial variability in experimental areas of central Italy
,”
J. Hydrol.
333
,
356
373
(
2007
).
14.
Brooks
,
R. J.
and
Corey
,
A. T.
,
Hydraulic Properties of Porous Media
, Hydrology Papers Vol.
3
(
Colorado State University
,
Fort Collins
,
1964
),
27
p.
15.
Campbell
,
G. S.
,
Soil Physics with BASIC
(
Elsevier
,
New York
,
1985
).
16.
Charbeneau
,
R. J.
,
Groundwater Hydraulics and Pollutant Transport
(
Prentice Hall
,
Upper Saddle River, NJ
,
2000
), pp.
206
211
.
17.
Choi
,
M.
and
Jacobs
,
J. M.
, “
Soil moisture variability of root zone profiles within SMEX02 remote sensing footprints
,”
Adv. Water Resour.
30
(
4
),
883
896
(
2007
).
18.
Chow
,
V. T.
,
Maidment
,
D. R.
, and
Mays
,
L. W.
,
Applied Hydrology
(
McGraw-Hill, Inc.
,
1988
),
572
p.
19.
Corradini
,
C.
,
Melone
,
F.
, and
Smith
,
R. E.
, “
A unified model for infiltration and redistribution during complex rainfall patterns
,”
J. Hydrol.
192
,
104
124
(
1997
).
20.
Crosson
,
W. L.
,
Limaye
,
A. S.
, and
Laymon
,
C. A.
, “
Parameter sensitivity of soil moisture retrievals from airborne C- and X-band radiometer measurements in SMEX02
,”
IEEE Trans. Geosci. Remote Sens.
43
,
2842
2853
(
2005
).
21.
Crow
,
W. T.
,
Berg
,
A. A.
,
Cosh
,
M. H.
,
Loew
,
A.
,
Mohanty
,
B. P.
,
Panciera
,
R.
, and
Walker
,
J. P.
, “
Upscaling sparse ground based soil moisture observations for the validation of coarse resolution satellite soil moisture products
,”
Rev. Geophys.
50
,
RG2002
, doi: (
2012
).
22.
Dagan
,
G.
and
Bresler
,
E.
, “
Unsaturated flow in spatially variable fields, 1 Derivation of models of infiltration and redistribution
,”
Water Resour. Res.
19
(
2
),
413
420
, doi: (
1983
).
22.
Dagan
,
G.
,
Flow and Transport in Porous Formations
(
Springer-Verlag
,
New York
,
1989
),
465
pp.
23.
Das
,
N. N.
and
Mohanty
,
B. P.
, “
Temporal dynamics of PSR-based soil moisture across spatial scales in an agricultural landscape during SMEX02: A wavelet approach
,”
Remote Sens. Environ.
112
(
2
),
522
534
(
2008
).
24.
Destouni
,
G.
, “
Prediction uncertainty in solute flux through heterogeneous soil
,”
Water Resour. Res.
28
(
3
),
793
801
, doi: (
1992
).
25.
Essig
,
E. T.
,
Corradini
,
C.
,
Morbidelli
,
R.
, and
Govindaraju
,
R. S.
, “
Infiltration and deep flow over sloping surfaces: Comparison of numerical and experimental results
,”
J. Hydrol.
379
,
30
42
(
2009
).
26.
Famiglietti
,
J. S.
,
Devereaux
,
J. A.
,
Laymon
,
C. A.
,
Tsegaye
,
T.
,
Houser
,
P. R.
,
Jackson
,
T. J.
,
Graham
,
S. T.
,
Rodell
,
M.
, and
van Oevelen
,
P. J.
, “
Ground-based investigation of soil moisture variability within remote sensing footprints during the Southern Great Plains 1997 (SGP97) hydrology experiment
,”
Water Resour. Res.
35
,
1839
1851
, doi: (
1999
).
27.
Famiglietti
,
J. S.
,
Ryu
,
D.
,
Berg
,
A. A.
,
Rodell
,
M.
, and
Jackson
,
T. J.
, “
Field observations of soil moisture variability across scales
,”
Water Resour. Res.
44
,
W01423
, doi: (
2008
).
28.
Fernandez
,
J. M.
and
Ceballos
,
A.
, “
Mean soil moisture estimation using temporal stability analysis
,”
J. Hydrol.
312
,
28
38
(
2005
).
29.
Fleming
,
K. L.
,
Westfall
,
D. G.
,
Wiens
,
D. W.
, and
Brodahl
,
M. C.
, “
Evaluating farmer defined management zone maps for variable rate fertilizer application
,”
Precis. Agric.
2
,
201
215
(
2000
).
30.
Foussereau
,
X.
,
Graham
,
W. D.
, and
Rao
,
P. S. C.
, “
Stochastic analysis of transient flow in unsaturated heterogeneous soils
,”
Water Resour. Res.
36
,
891
910
, doi: (
2000
).
31.
Gomez-Plaza
,
A.
,
Alvarez-Rogel
,
J.
,
Albaladejo
,
J.
, and
Castillo
,
V. M.
, “
Spatial patterns and temporal stability of soil moisture across a range of scales in a semi-arid environment
,”
Hydrol. Processes
14
,
1261
1277
(
2000
).
32.
Govindaraju
,
R. S.
,
Kavvas
,
M. L.
,
Jones
,
S. E.
, and
Rolston
,
D. E.
, “
Use of Green-Ampt model for analyzing convective transport in unsaturated soils
,”
J. Hydrol.
178
,
337
350
(
1996
).
33.
Govindaraju
,
R. S.
,
Morbidelli
,
R.
, and
Corradini
,
C.
, “
Areal infiltration modeling over soil with spatially-correlated hydraulic conductivities
,”
J. Hydrol. Eng.
6
,
150
158
(
2001
).
34.
Govindaraju
,
R. S.
,
Or
,
D.
,
Kavvas
,
M. L.
,
Rolston
,
D. E.
, and
Biggar
,
J. W.
, “
Error analyses of simplified unsaturated flow models under large uncertainty in hydraulic properties
,”
Water Resour. Res.
28
(
11
),
2913
2924
, doi: (
1992
).
35.
Grayson
,
R. B.
and
Blöschl
,
G.
, “
Spatial processes, organization and patterns
,” in
Spatial Patterns in Catchment Hydrology: Observations and Modelling
, edited by
R. B.
Grayson
and
G.
Blöschl
(
Cambridge University Press
,
2000
), pp.
3
16
.
36.
Grayson
,
R. B.
and
Western
,
A. W.
, “
Towards a real estimation of soil water content from point measurements: Time and space stability of mean response
,”
J. Hydrol.
207
,
68
82
(
1998
).
37.
Harter
,
T.
and
Yeh
,
T. J.
, “
Flow in unsaturated random porous media, nonlinear numerical analysis and comparison to analytical stochastic models
,”
Adv. Water Resour.
22
(
3
),
257
272
(
1998
).
38.
Haverkamp
,
R.
,
Parlange
,
J. Y.
,
Cuenca
,
R.
,
Ross
,
P. J.
, and
Steenhuis
,
T. S.
, “
Scaling of the Richards equation and its application to watershed modeling
,” in
Scale Dependence and Scale Invariance in Hydrology
(
Cambridge University Press
,
Cambridge
,
1998
), pp.
190
223
.
39.
Hawley
,
M. E.
,
Jackson
,
T. J.
, and
McCuen
,
R. H.
, “
Surface soil moisture variation on small agricultural watersheds
,”
J. Hydrol.
62
(
1
),
179
200
(
1983
).
40.
Hemakumara
,
H. M.
, “
Aggregation and disaggregation of soil moisture measurement
,” Ph.D. thesis (
The University of New Castles
,
NSW, Australia
,
2007
),
580
p.
41.
Kim
,
G.
and
Barros
,
A.
, “
Downscaling of remotely sensed soil moisture with a modified fractal interpolation method using contraction mapping and ancillary data
,”
Remote Sens. Environ.
83
,
400
413
(
2002
).
42.
Kim
,
C. P.
and
Stricker
,
J. N. M.
, “
Influence of spatially variable soil hydraulic properties and rainfall intensity on the water budget
,”
Water Resour. Res.
32
,
1699
1712
, doi: (
1996
).
43.
Kutilek
,
M.
,
Zayani
,
K.
,
Haverkamp
,
R.
,
Parlange
,
J. Y.
, and
Vachaud
,
G.
, “
Scaling of Richards' equation under invariant flux boundary conditions
,”
Water Resour. Res.
27
,
2181
2185
, doi: (
1991
).
44.
Lakhankar
,
T.
,
Jones
,
A. S.
,
Combs
,
C. L.
,
Sengupta
,
M.
,
VonderHaar
,
T. H.
, and
Khanbilvardi
,
R.
, “
Analysis of large scale spatial variability of soil moisture using a geostatistical method
,”
Sensors
10
(
1
),
913
932
(
2010
).
45.
Leij
,
F. J.
,
Sciortino
,
A.
,
Haverkamp
,
R.
, and
Ugalde
,
J. M. S.
, “
Aggregation of vertical flow in the vadose zone with auto- and cross-correlated hydraulic properties
,”
J. Hydrol.
338
,
96
112
(
2007
).
46.
Leij
,
F. J.
,
Sciortino
,
A.
, and
Warrick
,
A. W.
, “
Infiltration in two parallel soil columns
,”
Water Resour. Res.
42
,
W12408
, doi: (
2006
).
47.
Loll
,
P.
and
Moldrup
,
B. P.
, “
A new two-step stochastic modeling approach: Application to water transport in a spatially variable unsaturated soil
,”
Water Resour. Res.
34
(
8
),
1909
1918
, doi: (
1998
).
48.
Mantoglou
,
A.
, “
A theoretical approach for modeling unsaturated flow in spatially-variable soils—Effective flow models in finite domains and nonstationarity
,”
Water Resour. Res.
28
,
251
267
, doi: (
1992
).
49.
Mascaro
,
G.
,
Vivoni
,
E. R.
, and
Deidda
,
R.
, “
Downscaling soil moisture in the southern Great Plains through a calibrated multifractal model for land surface modeling applications
,”
Water Resour. Res.
46
,
W08546
, doi: (
2010
).
50.
Merlin
,
O.
,
Bitar
,
A. Al.
,
Walker
,
J. P.
, and
Kerr
,
Y.
, “
A sequential model for disaggregating near-surface soil moisture observations using multi-resolution thermal sensors
,”
Remote Sens. Environ.
113
,
2275
2284
(
2009
).
51.
Merlin
,
O.
,
Chehbouni
,
A.
,
Boulet
,
G.
, and
Kerr
,
Y.
, “
Assimilation of disaggregated microwave soil moisture into a hydrologic model using coarse-scale meteorological data
,”
J. Hydrometeorol.
7
,
1308
1322
(
2006
).
52.
Merlin
,
O.
,
Chehbouni
,
A.
,
Walker
,
J. P.
,
Panciera
,
R.
, and
Kerr
,
Y.
, “
A simple method to disaggregate passive microwave-based soil moisture
,”
IEEE Trans. Geosci. Remote Sens.
46
(
3
),
786
796
(
2008a
).
53.
Merlin
,
O.
,
Walker
,
J. P.
,
Chehbouni
,
A.
, and
Kerr
,
Y.
, “
Towards deterministic downscaling of SMOS soil moisture using MODIS derived soil evaporative efficiency
,”
Remote Sens. Environ.
112
,
3935
3946
(
2008b
).
54.
Miller
,
E. E.
and
Miller
,
R. D.
, “
Physical theory for capillary flow phenomena
,”
J. Appl. Phys.
27
,
324
332
(
1956
).
55.
Mladenova
,
I.
,
Lakshmi
,
V.
,
Walker
,
J. P.
,
Long
,
D. G.
, and
Jeu
,
R. De.
, “
An assessment of QuikSCAT Ku-band scatterometer data for soil moisture sensitivity
,”
IEEE Geosci. Remote Sens. Lett.
6
(
4
),
640
643
(
2009
).
56.
Narayan
,
U.
and
Lakshmi
,
V.
, “
A simple method for spatial disaggregation of radiometer derived soil moisture using high resolution radar observations
,”
J. Electromagn. Wave Appl.
19
(
13
),
1711
1719
(
2005
).
57.
Narayan
,
U.
and
Lakshmi
,
V.
, “
Characterizing subpixel variability of low resolution radiometer derived soil moisture using high resolution radar data
,”
Water Resour. Res.
44
,
W06425
, doi: (
2008
).
58.
Ojha
,
R.
,
Morbidelli
,
R.
,
Saltalippi
,
C.
,
Flammini
,
A.
, and
Govindaraju
,
R. S.
, “
Scaling of surface soil moisture over heterogeneous fields subjected to a single rainfall event
,”
J. Hydrol.
516
,
21
36
(
2014
).
59.
Rawls
,
W. J.
,
Brakensiek
,
D. L.
, and
Miller
,
N.
, “
Green-Ampt infiltration parameters from soils data
,”
ASCE J. Hydraul. Div.
109
(
1
),
62
70
(
1983
).
60.
Reichardt
,
K.
,
Nielsen
,
D. R.
, and
Biggar
,
J. W.
, “
Scaling of horizontal infiltration into homogeneous soils
,”
Soil Sci. Soc. Am. J.
36
(
2
),
241
245
(
1972
).
61.
Reichle
,
R. H.
,
Entekhabi
,
D.
, and
McLaughlin
,
D. B.
, “
Downscaling of radio brightness measurements for soil moisture estimation: A four-dimensional variational data assimilation approach
,”
Water Resour. Res.
37
(
9
),
2353
2364
, doi: (
2001
).
62.
Sadeghi
,
M.
,
Ghahraman
,
B.
,
Davary
,
K.
,
Hasheminia
,
S. M.
, and
Reichardt
,
K.
, “
Scaling to generalize a single solution of Richards' equation for soil water redistribution
,”
Sci. Agric. (Piracicaba, Braz.)
68
,
582
591
(
2011
), see http://www.scielo.br/scielo.php?pid=S0103-90162011000500011&script=sci_arttext&tlng=pt.
63.
Sadeghi
,
M.
,
Ghahraman
,
B.
,
Ziaei
,
A. N.
,
Davary
,
K.
, and
Reichardt
,
K.
, “
Invariant Solutions of Richards' Equation for Water Movement in Dissimilar Soils
,”
Soil Sci. Soc. Am. J.
76
(
1
),
1
9
(
2012
).
64.
Šimůnek
,
J.
,
Genuchten
,
M. T. V.
, and
Šejna
,
M.
, “
The HYDRUS software package for simulating two- and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media: Technical manual
,” Version 1.0, PC-Progress, Prague, Czech Republic (
2006
).
65.
Šimůnek
,
J.
,
van Genuchten
,
M. Th.
, and
Šejna
,
M.
, “
The Hydrus-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media
,” Version 3.0, HYDRUS Software Series 1, Department of Environmental Sciences, University of California Riverside, Riverside, CA (
2005
),
270
p.
66.
Sivapalan
,
M.
and
Wood
,
E. F.
, “
Spatial heterogeneity and scale in the infiltration response of catchments
,” in
Scale Problems in Hydrology
(
Springer
,
Netherlands
,
1986
), pp.
81
106
.
67.
Smith
,
R. E.
,
Goodrich
,
D. C.
, and
Woolhiser
,
D. A.
, “
Areal effective infiltration dynamics for runoff of small catchments
,” in
Transactions of the 14th International Congress of Soil Science, Kyoto, Japan, August 1990
(
1990
), Vol.
1
, pp.
22
27
.
68.
Sposito
,
G.
, “
Lie group invariance of the Richards equation
,” in
Dynamics of Fluids in Hierarchical Porous Media
, edited by
J. H.
Cushman
(
Academic
,
San Diego, California
,
1990
), pp.
327
347
.
69.
Sposito
,
G.
and
Jury
,
W. A.
, “
Inspectional analysis in the theory of water flow through unsaturated soil
,”
Soil Sci. Soc. Am. J.
49
(
4
),
791
798
(
1985
).
70.
Starks
,
P. J.
,
Heathman
,
G. C.
,
Jackson
,
T. J.
, and
Cosh
,
M. H.
, “
Temporal stability of soil moisture profile
,”
J. Hydrol.
324
,
400
411
(
2006
).
71.
Sugiura
,
R.
,
Noguchi
,
N.
, and
Ishii
,
K.
, “
Correction of low-altitude thermal images applied to estimating soil water status
,”
Biosyst. Eng.
96
,
301
313
(
2007
).
72.
Tsegaye
,
T. D.
,
Crosson
,
W. L.
,
Laymon
,
C. A.
,
Schamschula
,
M. P.
, and
Johnson
,
A. B.
, “
Application of a neural network-based spatial disaggregation scheme for addressing scaling of soil moisture
,” in
Scaling Methods in Soil Physics
, edited by
Y.
Pachepsky
,
D. E.
Radcliffe
, and
H. M.
Selim
(
CRC Press
,
New York
,
2003
), pp.
261
277
.
73.
van Genuchten
,
M. Th.
, “
A closed-form equation for predicting the hydraulic conductivity of unsaturated soils
,”
Soil Sci. Soc. Am. J.
44
,
892
898
(
1980
).
74.
van Genuchten
,
M. Th.
, “
Convective-dispersive transport of solutes involved in sequential first-order decay reactions
,”
Comput. Geosci.
11
(
2
),
129
147
(
1985
).
75.
VandenBygaart
,
A. J.
and
Protz
,
R.
, “
The representative elementary area (REA) in studies of quantitative soil micromorphology
,”
Geoderma
89
(
3
),
333
346
(
1999
).
76.
Vereecken
,
H.
,
Huisman
,
J. A.
,
Bogena
,
H.
,
Vanderborght
,
J.
,
Vrugt
,
J. A.
, and
Hopmans
,
J. W.
, “
On the value of soil moisture measurements in vadose zone hydrology: A review
,”
Water Resour. Res.
44
,
W00D06
, doi: (
2008
).
77.
Vereecken
,
H.
,
Kasteel
,
R.
,
Vanderborght
,
J.
, and
Harter
,
T.
, “
Upscaling hydraulic properties and soil water flow processes in heterogeneous soils: A review
,”
Vadose Zone J.
6
,
1
28
(
2007
).
78.
Wagner
,
W.
,
Blöschl
,
G.
,
Pampaloni
,
P.
,
Calvet
,
J. C.
,
Bizzarri
,
B.
,
Wigneron
,
J. P.
, and
Kerr
,
Y.
, “
Operational readiness of microwave remote sensing of soil moisture for hydrologic applications
,”
Nord. Hydrol.
38
(
1
),
1
20
(
2007
).
79.
Warrick
,
A. W.
and
Amoozegar-Fard
,
A.
, “
Infiltration and drainage calculations using spatially scaled hydraulic properties
,”
Water Resour. Res.
15
(
5
),
1116
1120
, doi: (
1979
).
80.
Western
,
A. W.
,
Blöschl
,
G.
, and
Grayson
,
R. B.
, “
How well do indicator variograms capture the spatial connectivity of soil moisture?
,”
Hydrol. Processes
12
(
12
),
1851
1868
(
1998a
).
81.
Western
,
A. W.
,
Blöschl
,
G.
, and
Grayson
,
R. B.
, “
Geostatistical characterisation of soil moisture patterns in the Tarrawarra catchment
,”
J. Hydrol.
205
(
1–2
),
20
37
(
1998b
).
82.
Western
,
A. W.
,
Grayson
,
R. B.
, and
Blöschl
,
G.
, “
Scaling of soil moisture: A hydrologic perspective
,”
Annu. Rev. Earth Planet. Sci.
30
,
149
180
(
2002
).
83.
Western
,
A. W.
,
Zhou
,
S. L.
,
Grayson
,
R. B.
,
McMahon
,
T. A.
,
Blöschl
,
G.
, and
Wilson
,
D. J.
, “
Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes
,”
J. Hydrol.
286
,
113
134
(
2004
).
84.
Wood
,
E. F.
,
Sivapalan
,
M.
, and
Beven
,
K.
, “
Similarity and scale in catchment storm response
,”
Rev. Geophys.
28
,
1
18
, doi: (
1990
).
85.
Wood
,
E. F.
,
Sivapalan
,
M.
,
Beven
,
K.
, and
Band
,
L.
, “
Effects of spatial variability and scale with implications to hydrological modeling
,”
J. Hydrol.
102
,
29
47
(
1988
).
86.
Woods
,
R. A.
,
Sivapalan
,
M.
, and
Duncan
,
M.
, “
Investigating the representative elementary area concept: An approach based on field data
,” in
Scale Issues in Hydrological Modelling. Advances in Hydrological Processes
, edited by
J. D.
Kalma
and
M.
Sivapalan
(
Wiley
, Sussex,
England
,
1995
), pp.
49
70
.
87.
Wu
,
L.
and
Pan
,
L.
, “
A generalized solution to infiltration from single-ring infiltrometers by scaling
,”
Soil Sci. Soc. Am. J.
61
,
1318
1322
(
1997
).
88.
Zhan
,
X.
,
Houser
,
P. R.
,
Walker
,
J. P.
, and
Crow
,
W. T.
, “
A method for retrieving high-resolution surface soil moisture from hydros L-band radiometer and radar observations
,”
IEEE Trans. Geosci. Remote Sens.
44
(
6
),
1534
1544
(
2006
).
89.
Zhu
,
J.
and
Mohanty
,
B. P.
, “
Spatial averaging of van Genuchten hydraulic parameters for steady-state flow in heterogeneous soils: A numerical study
,”
Vadose Zone J.
1
,
261
272
(
2002
).
90.
Zhu
,
J.
and
Mohanty
,
B. P.
, “
Upscaling of hydraulic properties of heterogeneous soils
,” in
Methods of Scaling in Soil Physics
, edited by
Y.
Pachepsky
 et al. (
CRC Press
,
Boca Raton, FL
,
2003
), pp.
97
117
.
91.
Zhu
,
J.
and
Mohanty
,
B. P.
, “
Soil hydraulic parameter upscaling for steady-state flow with root water uptake
,”
Vadose Zone J.
3
(
4
),
1464
1470
(
2004
).
You do not currently have access to this content.