Synchronization is a universal phenomenon found in many non-equilibrium systems. Much recent interest in this area has overlapped with the study of complex networks, where a major focus is determining how a system's connectivity patterns affect the types of behavior that it can produce. Thus far, modeling efforts have focused on the tendency of networks of oscillators to mutually synchronize themselves, with less emphasis on the effects of external driving. In this work, we discuss the interplay between mutual and driven synchronization in networks of phase oscillators of the Kuramoto type, and explore how the structure and emergence of such states depend on the underlying network topology for simple random networks with a given degree distribution. We find a variety of interesting dynamical behaviors, including bifurcations and bistability patterns that are qualitatively different for heterogeneous and homogeneous networks, and which are separated by a Takens-Bogdanov-Cusp singularity in the parameter region where the coupling strength between oscillators is weak. Our analysis is connected to the underlying dynamics of oscillator clusters for important states and transitions.

1.
J. A.
Acebrón
,
L. L.
Bonilla
,
C. J. P.
Vicente
,
F.
Ritort
, and
R.
Spigler
,
Rev. Mod. Phys.
77
,
137
(
2005
).
2.
A.
Balanov
,
N.
Janson
,
D.
Postnov
, and
O.
Sosnovtseva
,
Synchronization: From Simple to Complex
(
Springer
,
Berlin
,
2009
).
3.
S.
Strogatz
,
Physica D
143
,
1
(
2000
).
4.
Y.
Kuramoto
,
Chemical Oscillations, Waves, and Turbulence
(
Springer
,
Berlin
,
1984
).
5.
H.
Sompolinsky
,
D.
Golomb
, and
D.
Kleinfeld
,
Proc. Natl. Acad. Sci. U.S.A.
87
,
7200
(
1990
).
6.
I. Z.
Kiss
,
Y.
Zhai
, and
J. L.
Hudson
,
Science
296
,
1676
(
2002
).
7.
J.
Pantaleone
,
Phys. Rev. D
58
,
073002
(
1998
).
8.
K.
Wiesenfeld
,
P.
Colet
, and
S. H.
Strogatz
,
Phys. Rev. E
57
,
1563
(
1998
).
9.
S. N.
Dorogovtsev
,
A. V.
Goltsev
, and
J. F. F.
Mendes
,
Rev. Mod. Phys.
80
,
1275
(
2008
).
10.
A.
Arenas
,
A.
Diaz-Guilera
,
J.
Kurths
,
Y.
Moreno
, and
C.
Zhou
,
Phys. Rep.
469
,
93
(
2008
).
11.
A.
Barrat
,
M.
Barthélemy
, and
A.
Vespignani
,
Dynamical Processes on Complex Networks
(
Cambridge University Press
,
2008
).
12.
J.
Gómez-Gardeñes
,
S.
Gómez
,
A.
Arenas
, and
Y.
Moreno
,
Phys. Rev. Lett.
106
,
128701
(
2011
).
13.
P. S.
Skardal
and
A.
Arenas
,
Phys. Rev. E
89
,
062811
(
2014
).
14.
P. S.
Skardal
,
J.
Sun
,
D.
Taylor
, and
J. G.
Restrepo
,
Europhys. Lett.
101
,
20001
(
2013
).
15.
J. C.
Dunlap
,
J. J.
Loros
, and
P. J.
Decoursey
,
Chronobiology: Biological Timekeeping
(
Sinauer Associates
,
2003
).
16.
Y.-Y.
Liu
,
J.-J.
Slotine
, and
A.-L.
Barabási
,
Nature
473
,
167
(
2011
).
17.
C.
Liu
,
D. R.
Weaver
,
S. H.
Strogatz
, and
S. M.
Reppert
,
Cell
91
,
855
(
1997
).
18.
H.
Sakaguchi
,
Prog. Theor. Phys.
79
,
39
(
1988
).
19.
T. M.
Antonsen
,
R. T.
Faghih
,
M.
Girvan
,
E.
Ott
, and
J.
Platig
,
Chaos
18
,
037112
(
2008
).
20.
L. M.
Childs
and
S. H.
Strogatz
,
Chaos
18
,
043128
(
2008
).
21.
J.
Um
,
H.
Hong
, and
H.
Park
,
Phys. Rev. E
89
,
012810
(
2014
).
22.
E.
Ott
and
T. M.
Antonsen
,
Chaos
18
,
037113
(
2008
).
23.
Y.
Wang
and
F. J.
Doyle
,
Automatica
47
(
6
),
1236
(
2011
).
24.
D.
Pazó
and
E.
Montbrió
,
Phys. Rev. X
4
,
011009
(
2014
).
25.
P.
Ji
,
T. K. D. M.
Peron
,
F. A.
Rodrigues
, and
J.
Kurths
,
Sci. Rep.
4
,
4783
(
2014
).
26.
J. D.
Crawford
,
Rev. Mod. Phys.
63
,
991
(
1991
).
27.
S.
Strogatz
,
Nonlinear Dynamics and Chaos
(
Westview Press
,
2001
).
28.
Yu. A.
Kuznetsov
,
Elements of Applied Bifurcation Theory
, 3rd ed. (
Springer
,
Berlin
,
2004
).
29.
Yu. A.
Kuznetsov
,
SIAM J. Numer. Anal.
36
,
1104
(
1999
).
30.
Yu. A.
Kuznetsov
,
Int. J. Bifurcation Chaos
15
,
3535
(
2005
).
31.
G.
Danglemayr
and
J.
Guckenheimer
,
Arch. Ration. Mech. Anal.
97
,
321
(
1987
).
32.
J.
Guckenheimer
and
I. S.
Labouriau
,
Bull. Math. Bio.
55
,
937
(
1993
).
33.
R.
Mohieddine
, “
Chaos in the Hodgkin-Huxley equations: The Takens-Bodganov cusp bifurcation
,” Senior thesis
(Cornell University
,
2008
).
34.
M. H.
Jensen
,
P.
Bak
, and
T.
Bohr
,
Phys. Rev. Lett.
50
,
1637
(
1983
).
35.
J. R.
Engelbrecht
and
R.
Mirollo
,
Phys. Rev. Lett.
109
,
034103
(
2012
).
36.
C.
Song
,
S.
Havlin
, and
H. A.
Makse
,
Nature
433
,
392
(
2005
).
37.
J.
Hindes
,
S.
Singh
,
C. R.
Myers
, and
D. J.
Schneider
,
Phys. Rev. E
88
,
012809
(
2013
).
38.
This will be satisfied for virtually any J0, for random networks with power law degree exponents less than 3 and large degree cut-offs.
39.
All of the unstable cycle bifurcations in the heterogeneous case have not yet been resolved. Furthermore, for power-law networks with k = 1, 2…Kcut, when J2.5, additional SN curves emerge which complicate the unfolding shown in Fig. 1 (see Sec. II D).
40.
The annealed approximation for configuration model networks is less quantitatively accurate for networks with small average neighbor-degrees (such as the Poisson distributed network shown in Fig. 4(b)). This has made it difficult to verify bistability unambiguously for these networks, because the region of parameter space where it is predicted to exist is small (Sec. III A).
You do not currently have access to this content.