We study resonant spatially periodic solutions of the Lengyel-Epstein model modified to describe the chlorine dioxide-iodine-malonic acid reaction under spatially periodic illumination. Using multiple-scale analysis and numerical simulations, we obtain the stability ranges of 2:1 resonant solutions, i.e., solutions with wavenumbers that are exactly half of the forcing wavenumber. We show that the width of resonant wavenumber response is a non-monotonic function of the forcing strength, and diminishes to zero at sufficiently strong forcing. We further show that strong forcing may result in a π/2 phase shift of the resonant solutions, and argue that the nonequilibrium Ising-Bloch front bifurcation can be reversed. We attribute these behaviors to an inherent property of forcing by periodic illumination, namely, the increase of the mean spatial illumination as the forcing amplitude is increased.

1.
R.
Peter
,
M.
Hilt
,
F.
Ziebert
,
J.
Bammert
,
C.
Erlenkämper
,
N.
Lorscheid
,
C.
Weitenberg
,
A.
Winter
,
M.
Hammele
, and
W.
Zimmermann
, “
Stripe-hexagon competition in forced pattern-forming systems with broken up-down symmetry
,”
Phys. Rev. E
71
,
046212
(
2005
).
2.
G.
Seiden
,
S.
Weiss
,
J. H.
McCoy
,
W.
Pesch
, and
E.
Bodenschatz
, “
Pattern forming system in the presence of different symmetry-breaking mechanisms
,”
Phys. Rev. Lett.
101
,
214503
(
2008
).
3.
G.
Freund
,
W.
Pesch
, and
W.
Zimmermann
, “
Rayleigh–Bénard convection in the presence of spatial temperature modulations
,”
J. Fluid Mech.
673
,
318
348
(
2011
).
4.
M.
Dolnik
,
T.
Bánsági
,
S.
Ansari
,
I.
Valent
, and
I. R.
Epstein
, “
Locking of Turing patterns in the chlorine dioxide–iodine–malonic acid reaction with one-dimensional spatial periodic forcing
,”
Phys. Chem. Chem. Phys.
13
,
12578
12583
(
2011
).
5.
R.
Manor
,
A.
Hagberg
, and
E.
Meron
, “
Wave-number locking in spatially forced pattern-forming systems
,”
EPL
83
,
10005
(
2008
).
6.
Y.
Mau
,
A.
Hagberg
, and
E.
Meron
, “
Spatial periodic forcing can displace patterns it is intended to control
,”
Phys. Rev. Lett.
109
,
034102
(
2012
).
7.
R.
Manor
,
A.
Hagberg
, and
E.
Meron
, “
Wavenumber locking and pattern formation in spatially forced systems
,”
New J. Phys.
11
,
063016
(
2009
).
8.
M. Z.
Hossain
and
J. M.
Floryan
, “
Instabilities of natural convection in a periodically heated layer
,”
J. Fluid Mech.
733
,
33
67
(
2013
).
9.
Y.
Mau
,
L.
Haim
,
A.
Hagberg
, and
E.
Meron
, “
Competing resonances in spatially forced pattern-forming systems
,”
Phys. Rev. E
88
,
032917
(
2013
).
10.
S.
Weiss
,
G.
Seiden
, and
E.
Bodenschatz
, “
Resonance patterns in spatially forced Rayleigh–Bénard convection
,”
J. Fluid Mech.
756
,
293
308
(
2014
).
11.
L.
Haim
,
Y.
Mau
, and
E.
Meron
, “
Spatial forcing of pattern-forming systems that lack inversion symmetry
,”
Phys. Rev. E
90
,
022904
(
2014
).
12.
H.-C.
Kao
,
C.
Beaume
, and
E.
Knobloch
, “
Spatial localization in heterogeneous systems
,”
Phys. Rev. E
89
,
012903
(
2014
).
13.
Y.
Mau
,
L.
Haim
, and
E.
Meron
, “
Reversing desertification as a spatial resonance problem
,”
Phys. Rev. E
91
,
012903
(
2015
).
14.
H.-K.
Park
, “
Frequency locking in spatially extended systems
,”
Phys. Rev. Lett.
86
,
1130
1133
(
2001
).
15.
A.
Yochelis
,
A.
Hagberg
,
E.
Meron
,
A. L.
Lin
, and
H. L.
Swinney
, “
Development of standing-wave labyrinthine patterns
,”
SIAM J. Appl. Dyn. Syst.
1
,
236
247
(
2002
).
16.
A.
Yochelis
,
C.
Elphick
,
A.
Hagberg
, and
E.
Meron
, “
Two-phase resonant patterns in forced oscillatory systems: Boundaries, mechanisms and forms
,”
Physica D
199
,
201
222
(
2004
).
17.
B.
Marts
,
A.
Hagberg
,
E.
Meron
, and
A. L.
Lin
, “
Bloch-front turbulence in a periodically forced Belousov-Zhabotinsky reaction
,”
Phys. Rev. Lett.
93
,
108305
(
2004
).
18.
J.
Burke
,
A.
Yochelis
, and
E.
Knobloch
, “
Classification of spatially localized oscillations in periodically forced dissipative systems
,”
SIAM J. Appl. Dyn. Syst.
7
,
651
711
(
2008
).
19.
A. S.
Mikhailov
and
K.
Showalter
, “
Control of waves, patterns and turbulence in chemical systems
,”
Phys. Rep.
425
,
79
194
(
2006
).
20.
P.
Coullet
,
J.
Lega
,
B.
Houchmanzadeh
, and
J.
Lajzerowicz
, “
Breaking chirality in nonequilibrium systems
,”
Phys. Rev. Lett.
65
,
1352
(
1990
).
21.
C.
Elphick
,
A.
Hagberg
,
E.
Meron
, and
B.
Malomed
, “
On the origin of traveling pulses in bistable systems
,”
Phys. Lett. A
230
,
33
37
(
1997
).
22.
I. V.
Barashenkov
and
S. R.
Woodford
, “
Complexes of stationary domain walls in the resonantly forced Ginsburg-Landau equation
,”
Phys. Rev. E
71
,
026613
(
2005
).
23.
L.
Korzinov
,
M.
Rabinovich
, and
L.
Tsimring
, “
Symmetry breaking in nonequilibrium systems: Interaction of defects
,”
Phys. Rev. A
46
,
7601
(
1992
).
24.
L.
Haim
,
A.
Hagberg
,
R.
Nagao
,
A. P.
Steinberg
,
M.
Dolnik
,
I. R.
Epstein
, and
E.
Meron
, “
Fronts and patterns in a spatially forced CDIMA reaction
,”
Phys. Chem. Chem. Phys.
16
,
26137
26143
(
2014
).
25.
A. P.
Muñuzuri
,
M.
Dolnik
,
A. M.
Zhabotinsky
, and
I. R.
Epstein
, “
Control of the chlorine dioxide-iodine-malonic acid oscillating reaction by illumination
,”
J. Am. Chem. Soc.
121
,
8065
8069
(
1999
).
26.
I.
Lengyel
,
G.
Rabai
, and
I. R.
Epstein
, “
Experimental and modeling study of oscillations in the chlorine dioxide-iodine-malonic acid reaction
,”
J. Am. Chem. Soc.
112
,
9104
9110
(
1990
).
27.
A.
Hagberg
and
E.
Meron
, “
The dynamics of curved fronts: Beyond geometry
,”
Phys. Rev. Lett.
78
,
1166
1169
(
1997
).
28.
M. C.
Cross
and
P. C.
Hohenberg
, “
Pattern formation outside of equilibrium
,”
Rev. Mod. Phys.
65
,
851
(
1993
).
29.
E.
Meron
,
Nonlinear Physics of Ecosystems
(
CRC Press
,
Taylor & Francis Group
,
2015
).
You do not currently have access to this content.