The dynamics of human mobility characterizes the trajectories that humans follow during their daily activities and is the foundation of processes from epidemic spreading to traffic prediction and information recommendation. In this paper, we investigate a massive data set of human activity, including both online behavior of browsing websites and offline one of visiting towers based mobile terminations. The non-Markovian character observed from both online and offline cases is suggested by the scaling law in the distribution of dwelling time at individual and collective levels, respectively. Furthermore, we argue that the lower entropy and higher predictability in human mobility for both online and offline cases may originate from this non-Markovian character. However, the distributions of individual entropy and predictability show the different degrees of non-Markovian character between online and offline cases. To account for non-Markovian character in human mobility, we apply a protype model with three basic ingredients, namely, preferential return, inertial effect, and exploration to reproduce the dynamic process of online and offline human mobilities. The simulations show that the model has an ability to obtain characters much closer to empirical observations.

1.
L.
Hufnagel
,
D.
Brockmann
, and
T.
Geisel
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
15124
(
2004
).
2.
V.
Colizza
,
A.
Barrat
,
M.
Barthlemy
, and
A.
Vespignani
,
BMC Med.
5
,
34
(
2007
).
4.
P.
Wang
,
M. C.
González
,
C. A.
Hidalgo
, and
A.-L.
Barabási
,
Science
324
,
1071
(
2009
).
5.
X.-P.
Han
,
Z.-D.
Zhao
,
T.
Hadzibeganovic
, and
B.-H.
Wang
,
Commun. Nonlinear. Sci.
19
,
5
(
2014
).
6.
D.
Helbing
,
Rev. Mod. Phys.
73
,
1067
(
2001
).
7.
F.
Simini
,
M. C.
González
,
A.
Maritan
, and
A.-L.
Barabási
,
Nature
484
,
96
(
2012
).
8.
D.
Balcan
and
A.
Vespignani
,
Nat. Phys.
7
,
581
(
2011
).
9.
L.
,
M.
Medo
,
C. H.
Yeung
,
Y.-C.
Zhang
,
Z.-K.
Zhang
, and
T.
Zhou
,
Phys. Rep.
519
,
1
(
2012
).
10.
M.
Starnini
,
A.
Baronchelli
, and
R.
Pastor-Satorras
,
Phys. Rev. Lett.
110
,
168701
(
2013
).
11.
D.
Brockmann
,
L.
Hufnagel
, and
T.
Geisel
,
Nature
439
,
462
(
2006
).
12.
I.
Rhee
,
M.
Shin
,
S.
Hong
,
K.
Lee
, and
S.
Chong
,
IEEE/ACM Trans. Netw.
19
,
3
(
2011
).
13.
M. C.
Gonzalez
,
C. A.
Hidalgo
, and
A.-L.
Barabási
,
Nature
453
,
779
(
2008
).
14.
C.
Song
,
T.
Koren
,
P.
Wang
, and
A.-L.
Barabási
,
Nat. Phys.
6
,
818
(
2010
).
15.
C.
Song
,
Z.
Qu
,
N.
Blumm
, and
A.-L.
Barabási
,
Science
327
,
1018
(
2010
).
16.
X.-Y.
Yan
,
X.-P.
Han
,
B.-H.
Wang
, and
T.
Zhou
,
Sci. Rep.
3
,
02678
(
2013
).
17.
B. A.
Huberman
,
P. L. T.
Pirolli
,
J. E.
Pitkow
, and
R. M.
Lukose
,
Science
280
,
95
(
1998
).
18.
A.
Chmiel
,
K.
Kowalska
, and
J. A.
Hołyst
,
Phys. Rev. E
80
,
066122
(
2009
).
19.
M.
Szell
,
R.
Sinatra
,
G.
Petri
,
S.
Thurner
, and
V.
Latora
,
Sci. Rep.
2
,
457
(
2012
).
20.
Z.-D.
Zhao
,
Z.
Yang
,
Z.
Zhang
,
T.
Zhou
,
Z.-G.
Huang
, and
Y.-C.
Lai
,
Sci. Rep.
3
,
3472
(
2013
).
21.
Z.-D.
Zhao
,
Z.-G.
Huang
,
L.
Huang
,
H.
Liu
, and
Y.-C.
Lai
,
Phys. Rev. E
90
,
050802(R)
(
2014
).
22.
R.
Sinatra
and
M.
Szell
,
Entropy
16
,
543
(
2014
).
23.
C. M.
Schneider
,
V.
Belik
,
T.
Couronn
,
Z.
Smoreda
, and
M. C.
González
,
J. R. Soc., Interface
10
,
84
(
2013
).
25.
J.-P.
Bouchaud
and
A.
Georges
,
Phys. Rep.
195
,
127
(
1990
).
26.
D.
Ben-Avraham
and
S.
Havlin
,
Diffusion and Reactions in Fractals and Disordered Systems
(
Cambridge University Press
,
2000
).
27.
S.
Brin
and
L.
Page
,
Comput. Networks ISDN Syst.
30
,
107
(
1998
).
28.
N.
Craswell
and
M.
Szummer
, in
Proceedings of the 30th Annual International ACM SIGIR CRDIR
(
ACM
,
2007
), pp.
239
246
.
29.
R.
Fagin
,
A. R.
Karlin
,
J.
Kleinberg
,
P.
Raghavan
,
S.
Rajagopalan
,
R.
Rubinfeld
,
M.
Sudan
, and
A.
Tomkins
,
Ann. Appl. Probab.
11
,
810
(
2001
).
30.
M. R.
Meiss
,
B.
Gonçalves
,
J. J.
Ramasco
,
A.
Flammini
, and
F.
Menczer
, in
Proceedings of the 21st ACM CHH
(
ACM
,
2010
), pp.
229
234
.
31.
F.
Chierichetti
,
R.
Kumar
,
P.
Raghavan
, and
T.
Sarlós
, in
Proceedings of the 21st International Conference on WWW
(
ACM
,
2012
), pp.
609
618
.
32.
A.
Clauset
,
C.
Shalizi
, and
M. E. J.
Newman
,
SIAM Rev.
51
,
661
(
2009
).
33.
G. W.
Corder
and
D. I.
Foreman
,
Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach
(
John Wiley & Sons
,
2009
).
34.
A.-L.
Barabási
and
R.
Albert
,
Science
286
,
509
(
1999
).
35.
T.
Antal
and
S.
Redner
,
J. Phys. A
38
,
2555
(
2005
).
36.
J. P.
Bagrow
and
Y.-R.
Lin
,
PLoS ONE
7
,
e37676
(
2012
).
37.
J. F. C.
Kingman
,
Proc. London Math. Soc.
3
,
337
(
1963
).
38.
J.
Ziv
and
A.
Lempel
,
IEEE Trans. Inf. Theory
23
,
337
(
1977
).
39.
I.
Kontoyiannis
,
P. H.
Algoet
,
Y. M.
Suhov
, and
A. J.
Wyner
,
IEEE Trans. Inf. Theory
44
,
1319
(
1998
).
40.
R.
Fano
and
D.
Hawkins
,
Am. J. Phys.
29
,
793
(
1961
).
41.
42.
J. G.
Oliveira
and
A.-L.
Barabási
,
Nature
437
,
1251
(
2005
).
43.
Z.
Dezsö
,
E.
Almaas
,
A.
Lukács
,
B.
Rácz
,
I.
Szakadát
, and
A.-L.
Barabási
,
Phys. Rev. E
73
,
066132
(
2006
).
44.
T.
Zhou
,
H. A. T.
Kiet
,
B. J.
Kim
,
B. H.
Wang
, and
P.
Holme
,
Europhys. Lett.
82
,
28002
(
2008
).
45.
B.
Gonçalves
and
J. J.
Ramasco
,
Phys. Rev. E
78
,
026123
(
2008
).
46.
Y.
Wu
,
C.
Zhou
,
J.
Xiao
,
J.
Kurths
, and
H. J.
Schellnhuber
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
18803
(
2010
).
47.
Z.-D.
Zhao
,
Y.
Liu
, and
M.
Tang
,
Chaos
22
,
023150
(
2012
).
48.
A.
Arenas
,
A.
Diaz-Guilera
,
J.
Kurths
,
Y.
Moreno
, and
C.
Zhou
,
Phys. Rep.
469
,
93
(
2008
).
49.
P.
Holme
and
J.
Saramäki
,
Phys. Rep.
519
,
97
(
2012
).
You do not currently have access to this content.