We present an application and analysis of a visualization method for measure-preserving dynamical systems introduced by I. Mezić and A. Banaszuk [Physica D 197, 101 (2004)], based on frequency analysis and Koopman operator theory. This extends our earlier work on visualization of ergodic partition [Z. Levnajić and I. Mezić, Chaos 20, 033114 (2010)]. Our method employs the concept of Fourier time average [I. Mezić and A. Banaszuk, Physica D 197, 101 (2004)], and is realized as a computational algorithms for visualization of periodic and quasi-periodic sets in the phase space. The complement of periodic phase space partition contains chaotic zone, and we show how to identify it. The range of method's applicability is illustrated using well-known Chirikov standard map, while its potential in illuminating higher-dimensional dynamics is presented by studying the Froeschlé map and the Extended Standard Map.

1.
I.
Mezić
and
A.
Banaszuk
, “
Comparison of systems with complex behavior
,”
Physica D
197
,
101
(
2004
).
2.
Z.
Levnajić
and
I.
Mezić
, “
Ergodic theory and visualization. I. Mesochronic plots for visualization of ergodic partition and invariant sets
,”
Chaos
20
,
033114
(
2010
).
3.
S.
Wiggins
,
Introduction to Applied Dynamical Systems and Chaos
(
Springer-Verlag
,
1990
);
A.
Lichtenberg
and
M.
Lieberman
,
Regular and Stochastic Motion
(
Springer-Verlag
,
1983
);
A.
Stuart
and
A. R.
Humphries
,
Dynamical Systems and Numerical Analysis
(
CUP
,
1998
).
4.
J. D.
Meiss
, “
Symplectic maps, variational principles, and transport
,”
Rev. Mod. Phys.
64
,
795
(
1992
).
5.
I.
Mezić
, “
On the dynamics of molecular conformation
,”
Proc. Natl. Acad. Sci. U. S. A.
103
,
7542
(
2006
).
6.
C.
Froeschlé
,
M.
Guzzo
, and
E.
Lega
, “
Graphical evolution of the Arnold web: From order to chaos
,”
Science
289
,
2108
(
2000
).
7.
I.
Mezić
,
S.
Loire
,
V. A.
Fonoberov
, and
P.
Hogan
, “
A new mixing diagnostic and Gulf oil spill movement
,”
Science
330
,
486
(
2010
).
8.
C. K. R. T.
Jones
, “
Whither applied nonlinear dynamics?
” in
Mathematics Unlimited: 2001 and Beyond
(
Springer
,
New York
,
2001
), Vol.
II
, p.
631
.
9.
B.
Thiere
and
M.
Dellnitz
, “
Return time dynamics as a tool for finding almost invariant sets
,”
Ann. N. Y. Acad. Sci.
1065
,
44
(
2005
).
10.
R. W.
Easton
,
J. D.
Meiss
, and
S.
Carver
, “
Exit times and transport for symplectic twist maps
,”
Chaos
3
,
153
(
1993
);
[PubMed]
J. D.
Meiss
, “
Average exit time for volume-preserving maps
,”
Chaos
7
,
139
(
1997
).
[PubMed]
11.
M.
Dellnitz
,
A.
Hohmann
,
O.
Junge
, and
M.
Rumpf
, “
Exploring invariant sets and invariant measures
,”
Chaos
7
,
221
(
1997
);
[PubMed]
G.
Froyland
and
K.
Padberg
, “
Almost-invariant sets and invariant manifolds – Connecting probabilistic and geometric descriptions of coherent structures in flows
,”
Physica D
238
,
1507
(
2009
).
12.
B.
Krauskopf
 et al, “
A survey of methods for computing (un) stable manifolds of vector fields
,”
Int. J. Bifurcation Chaos
15
,
763
(
2005
).
13.
M. E.
Henderson
, “
Computing Invariant Manifolds by Integrating Fat Trajectories
,”
SIAM J. Appl. Dyn. Syst.
4
,
832
(
2005
).
14.
I.
Mezić
, “
On geometrical and statistical properties of dynamical systems: Theory and applications
,” Ph.D. dissertation (
California Institute of Technology
,
1994
).
15.
I.
Mezić
and
S.
Wiggins
, “
A method for visualization of invariant sets of dynamical systems based on ergodic partition
,”
Chaos
9
,
213
(
1999
).
16.
P.
Walters
,
Introduction to Ergodic Theory
(
Springer
,
2000
);
S.
Kalikow
and
R.
McCutcheon
,
An Outline of Ergodic Theory
(
CUP
,
2010
);
J. P.
Eckmann
and
D.
Ruelle
, “
Ergodic theory of chaos and strange attractors
,”
Rev. Mod. Phys.
57
,
617
(
1985
).
17.
D.
D'Alessandro
,
M.
Dahleh
, and
I.
Mezić
, “
Control of mixing in fluid flow: A maximum entropy approach
,”
IEEE Trans. Autom. Control
44
,
1852
(
1999
).
18.
I.
Mezić
and
F.
Sotiropoulos
, “
Ergodic theory and experimental visualization of invariant sets in chaotically advected flows
,”
Phys. Fluids
14
,
2235
(
2002
).
19.
K.
Gröchenig
,
Foundations of Time-Frequency Analysis
(
Birkhäuser
,
2001
);
L.
Cohen
,
Time-Frequency Analysis
(
Prentice-Hall
,
1995
).
20.
T. Y.
Hou
and
Z.
Shi
, “
Adaptive data analysis via sparse time-frequency representation
,”
Adv. Adapt. Data Anal.
3
,
1
(
2011
).
21.
I.
Mezić
, “
Spectral properties of dynamical systems, model reduction and decompositions
,”
Nonlinear Dyn.
41
,
309
(
2005
).
22.
J.
Laskar
,
C.
Froeschlé
, and
A.
Celletti
, “
The measure of chaos by the numerical analysis of the fundamental frequencies, application to the standard mapping
,”
Physica D
56
,
253
(
1992
).
23.
C.
Chandré
,
S.
Wiggins
, and
T.
Uzer
, “
Time-frequency analysis of chaotic systems
,”
Physica D
181
,
171
(
2003
).
24.
J.
Sun
,
Y.
Zhao
,
T.
Nakamura
, and
M.
Small
, “
From phase space to frequency domain: A time-frequency analysis for chaotic time series
,”
Phys. Rev. E
76
,
016220
(
2007
).
25.
R. T.
Canolty
 et al, “
Detecting event-related changes of multivariate phase coupling in dynamic brain networks
,”
J. Neurophysiol.
107
,
2020
(
2012
).
26.
J. N.
Oppenheim
and
M. O.
Magnasco
, “
Human time-frequency acuity beats the Fourier uncertainty principle
,”
Phys. Rev. Lett.
110
,
044301
(
2013
).
27.
K.
Petersen
,
Ergodic Theory and Harmonic Analysis
(
CUP
,
1995
);
I.
Assani
,
Wiener Wintner Ergodic Theorems
(
World Scientific
,
2003
);
A.
del Junco
, “
Ergodic theorems
,” in
Mathematics of Complexity and Dynamical Systems
(
Springer
,
2011
), p.
241
.
28.
A.
Mauroy
and
I.
Mezić
, “
On the use of Fourier averages to compute the global isochrons of (quasi) periodic dynamics
,”
Chaos
22
,
033112
(
2012
).
29.
M.
Budišić
,
R.
Mohr
, and
I.
Mezić
, “
Applied Koopmanism
,”
Chaos
22
,
047510
(
2012
).
30.
M.
Dellnitz
,
G.
Froyland
, and
S.
Sertl
, “
On the isolated spectrum of the Perron-Frobenius operator
,”
Nonlinearity
13
,
1171
(
2000
);
M.
Dellnitz
and
O.
Junge
, “
On the approximation of complicated dynamical behavior
,”
SIAM J. Numer. Anal.
36
,
491
515
(
1999
).
31.
B.
Chirikov
, “
A universal instability of many-dimensional oscillator systems
,”
Phys. Rep.
52
,
263
(
1979
).
32.
I.
Mezić
, “
Break-up of invariant surfaces in action-angle-angle maps and flows
,”
Physica D
154
,
51
(
2001
).
33.
C.
Froeschlé
, “
Numerical study of a four-dimensional mapping
,”
Astron. Astrophys.
16
,
172
(
1972
), see http://adsabs.harvard.edu/full/1972A%26A....16..172F.
34.
Z.
Levnajić
and
B.
Tadić
, “
Stability and Chaos in coupled two-dimensional maps on gene regulatory network of bacterium E. coli
,”
Chaos
20
,
033115
(
2010
).
35.

The concept of resonance usually indicates a connection between two periodic phenomena. However, here we use the term “to resonate with” in the sense of dynamical systems: FTA weakly resonates with a chaotic trajectory, since the frequency spectrum of such a trajectory can, in general, be decomposed into infinitely many harmonics, one of which corresponds to the chosen frequency.

36.
L.
Rey-Bellet
and
L.
Young
, “
Large deviations in non-uniformly hyperbolic dynamical systems
,”
Ergodic Theory Dyn. Syst.
28
,
587
(
2008
).
37.
A. M.
Fox
and
J. D.
Meiss
, “
Greene's residue criterion for the breakup of invariant tori of volume-preserving maps
,”
Physica D
243
,
45
(
2013
).
38.
O. N.
Yaveroğlu
 et al, “
Revealing the hidden language of complex networks
,”
Sci. Rep.
4
,
4547
(
2014
).
39.
Z.
Levnajić
and
B.
Tadić
, “
Self-organization in trees and motifs of two-dimensional chaotic maps with time delay
,”
J. Stat. Mech.: Theory Exp.
2008
,
P03003
(
2008
), see http://iopscience.iop.org/1742-5468/2008/03/P03003.
40.
H. C.
Romesburg
,
Cluster Analysis for Researchers
(
Krieger Publishing Co.
,
2004
).
41.
M.
Budišić
and
I.
Mezić
, “
An approximate parametrization of the ergodic partition using time averaged observables
,” in
Proceedings of IEEE Conference on Decision and Control
(
IEEE
,
2009
), p.
3162
.
You do not currently have access to this content.