Finding equilibria of the finite size Kuramoto model amounts to solving a nonlinear system of equations, which is an important yet challenging problem. We translate this into an algebraic geometry problem and use numerical methods to find all of the equilibria for various choices of coupling constants K, natural frequencies, and on different graphs. We note that for even modest sizes (N ∼ 10–20), the number of equilibria is already more than 100 000. We analyze the stability of each computed equilibrium as well as the configuration of angles. Our exploration of the equilibrium landscape leads to unexpected and possibly surprising results including non-monotonicity in the number of equilibria, a predictable pattern in the indices of equilibria, counter-examples to conjectures, multi-stable equilibrium landscapes, scenarios with only unstable equilibria, and multiple distinct extrema in the stable equilibrium distribution as a function of the number of cycles in the graph.

1.
Y.
Kuramoto
,
International Symposium on Mathematical Problems in Theoretical Physics
(
Springer
,
1975
), pp.
420
422
.
2.
J. A.
Acebrón
,
L. L.
Bonilla
,
C. J.
Pérez Vicente
,
F.
Ritort
, and
R.
Spigler
,
Rev. Mod. Phys.
77
(
1
),
137
(
2005
).
3.
S. H.
Strogatz
,
Physica D
143
(
1
),
1
20
(
2000
).
4.
F.
Dörfler
and
F.
Bullo
,
Automatica
50
(
6
),
1539
1564
(
2014
).
5.
L.
Casetti
,
M.
Pettini
, and
E. G. D.
Cohen
,
J. Stat. Phys.
111
,
1091
1123
(
2003
).
6.
D.
Mehta
, “
Lattice vs. continuum: Landau gauge fixing and 't Hooft-Polyakov monopoles
,” Ph.D. thesis,
The University of Adelaide, Australasian Digital Theses Program
,
2009
.
7.
D.
Mehta
and
M.
Kastner
,
Ann. Phys.
326
,
1425
1440
(
2011
).
8.
L.
von Smekal
,
D.
Mehta
,
A.
Sternbeck
, and
A. G.
Williams
, in
PoS LAT
2007
, p.
382
.
9.
L.
von Smekal
,
A.
Jorkowski
,
D.
Mehta
, and
A.
Sternbeck
. in
PoS CONFINEMENT
,
2008
, Vol.
8
, p.
048
.
10.
R.
Nerattini
,
M.
Kastner
,
D.
Mehta
, and
L.
Casetti
,
Phys. Rev. E
87
(
3
),
032140
(
2013
).
11.
M.
Kastner
,
Phys. Rev. E
83
(
3
),
031114
(
2011
).
12.
C.
Hughes
,
D.
Mehta
, and
J.-I.
Skullerud
,
Ann. Phys.
331
,
188
215
(
2013
).
13.
D.
Mehta
and
M.
Schröck
,
Phys. Rev. D
89
,
094512
(
2014
).
14.
D.
Mehta
,
A.
Sternbeck
,
L.
von Smekal
, and
A. G.
Williams
, in
PoS, QCD-TNT09
,
2009
, p.
025
.
15.
J.
Baillieul
and
C. I.
Byrnes
,
IEEE Trans. Circuits Syst.
29
(
11
),
724
737
(
1982
).
16.
A.
Araposthatis
,
S.
Sastry
, and
P.
Varaiya
,
Int. J. Electr. Power Energy Syst.
3
(
3
),
115
126
(
1981
).
17.
S. H.
Strogatz
and
R. E.
Mirollo
,
J. Stat. Phys.
63
(
3–4
),
613
635
(
1991
).
18.
M.
Verwoerd
and
O.
Mason
,
SIAM J. Appl. Dyn. Syst.
8
(
1
),
417
453
(
2009
).
19.
M.
Verwoerd
and
O.
Mason
,
SIAM J. Appl. Dyn. Syst.
7
(
1
),
134
160
(
2008
).
20.
F.
Dörfler
and
F.
Bullo
,
SIAM J. Appl. Dyn. Syst.
10
(
3
),
1070
1099
(
2011
).
21.
D.
Aeyels
and
J. A.
Rogge
,
Prog. Theor. Phys.
112
(
6
),
921
942
(
2004
).
22.
R. E.
Mirollo
and
S. H.
Strogatz
,
Physica D
205
(
1–4
),
249
266
(
2005
).
23.
F.
Dörfler
,
M.
Chertkov
, and
F.
Bullo
,
Proc. Natl. Acad. Sci. U.S.A.
110
(
6
),
2005
2010
(
2013
).
24.
R.
Taylor
,
J. Phys. A: Math. Theor.
45
(
5
),
055102
(
2012
).
25.
J.
Ochab
and
P. F.
Góra
, “
Synchronization of coupled oscillators in a local one-dimensional Kuramoto model
,” preprint arXiv:0909.0043 (
2009
).
26.
P. F. C.
Tilles
,
F. F.
Ferreira
, and
H. A.
Cerdeira
,
Phys. Rev. E
83
,
066206
(
2011
).
27.
A. P.
Morgan
and
A. J.
Sommese
,
Appl. Math. Comput.
29
(
2
),
123
160
(
1989
).
28.
A. J.
Sommese
and
C. W.
Wampler
,
The Numerical Solution of Systems of Polynomials Arising in Engineering and Science
(
World Scientific Publishing
,
Hackensack, NJ
,
2005
).
29.
D. J.
Bates
,
J. D.
Hauenstein
,
A. J.
Sommese
, and
C. W.
Wampler
,
Numerically Solving Polynomial Systems with Bertini
(
SIAM
,
2013
), Vol.
25
.
30.
D.
Mehta
,
H.
Nguyen
, and
K.
Turitsyn
, “
Numerical polynomial homotopy continuation method to locate all the power flow solutions
,” preprint arXiv:1408.2732 (
2014
).
31.
S.
Chandra
,
D.
Mehta
, and
A.
Chakrabortty
, “
Exploring the impact of wind penetration on power system equilibrium using a numerical continuation approach
,” preprint arXiv:1409.7844 (
2014
).
32.
D.
Mehta
,
Adv. High Energy Phys.
2011
,
263937
.
33.
M.
Maniatis
and
D.
Mehta
,
Eur. Phys. J. Plus
127
,
91
(
2012
).
34.
M.
Kastner
and
D.
Mehta
,
Phys. Rev. Lett.
107
,
160602
(
2011
).
35.
D.
Mehta
,
Y.-H.
He
, and
J. D.
Hauenstein
,
JHEP
2012
(
18
),
1207
(
2012
).
36.
D.
Mehta
,
J. D.
Hauenstein
, and
M.
Kastner
,
Phys. Rev. E
85
,
061103
(
2012
).
37.
B.
Greene
,
D.
Kagan
,
A.
Masoumi
,
D.
Mehta
,
E. J.
Weinberg
, and
X.
Xiao
,
Phys. Rev. D
88
(
2
),
026005
(
2013
).
38.
D.
Mehta
,
D. A.
Stariolo
, and
M.
Kastner
,
Phys. Rev. E
87
(
5
),
052143
(
2013
).
39.
D.
Martinez-Pedrera
,
D.
Mehta
,
M.
Rummel
, and
A.
Westphal
,
JHEP
2013
(
110
),
1306
(
2013
).
40.
Y.-H.
He
,
D.
Mehta
,
M.
Niemerg
,
M.
Rummel
, and
A.
Valeanu
,
JHEP
2013
(
50
),
1307
(
2013
).
41.
D. J.
Bates
,
J. D.
Hauenstein
,
A. J.
Sommese
, and
C. W.
Wampler
, “
Bertini: Software for numerical algebraic geometry
,” available at http://bertini.nd.edu.
42.
J. D.
Hauenstein
and
F.
Sottile
,
ACM Trans. Math. Software
38
(
4
),
28
(
2012
).
43.
D. A.
Wiley
,
S. H.
Strogatz
, and
M.
Girvan
,
Chaos
16
,
015103
(
2006
).
44.
S. H.
Strogatz
and
R. E.
Mirollo
,
Physica D
31
,
143
(
1988
).
45.
G. B.
Ermentrout
,
J. Math. Biol.
23
,
55
(
1985
).
You do not currently have access to this content.