The spectra of many real world networks exhibit properties which are different from those of random networks generated using various models. One such property is the existence of a very high degeneracy at the zero eigenvalue. In this work, we provide all the possible reasons behind the occurrence of the zero degeneracy in the network spectra, namely, the complete and partial duplications, as well as their implications. The power-law degree sequence and the preferential attachment are the properties which enhances the occurrence of such duplications and hence leading to the zero degeneracy. A comparison of the zero degeneracy in protein-protein interaction networks of six different species and in their corresponding model networks indicates importance of the degree sequences and the power-law exponent for the occurrence of zero degeneracy.

1.
A.
Barrat
,
M.
Barthelemy
, and
A.
Vespignani
,
Dynamical processes on Complex Networks
(
Cambridge University Press
,
Cambridge
,
2008
), Vol. 1.
2.
R.
Albert
and
A.-L.
Barabási
,
Rev. Mod. Phys.
74
,
47
(
2002
).
3.
M. E. J.
Newman
,
SIAM Rev.
45
,
167
(
2003
).
4.
S. H.
Strogatz
,
Nature
410
,
268
(
2001
).
5.
S.
Boccaletti
 et al,
Phys. Rep.
424
,
175
(
2006
).
6.
P. Van
Mieghem
,
Graph Spectra for Complex Networks
(
Cambridge University Press
,
2011
).
7.
F. R. K.
Chung
,
Spectral Graph Theory
(
American Mathematical Society
,
1997
).
8.
D.
Cvetković
,
P.
Rowlinson
, and
S.
Simić
,
An Introduction to the Theory of Graph Spectra
(
Cambridge University Press
,
2010
).
9.
I. J.
Farkas
 et al,
Phys. Rev. E
64
,
026704
(
2001
);
I. J.
Farkas
 et al,
Physica A
314
,
25
(
2002
).
10.
R. R.
Nadakuditi
and
M. E. J.
Newman
,
Phys. Rev. Lett.
108
(
18
),
188701
(
2012
).
11.
S.
Jalan
 et al,
PLoS One
9
(
2
),
e88249
(
2014
).
12.
A.
Agrawal
 et al,
Physica A
404
,
359
(
2014
).
13.
K. I.
Goh
,
B.
Kahng
, and
D.
Kim
,
Phys. Rev. E
64
,
051903
(
2001
);
K.
Rajan
and
L. F.
Abbott
,
Phys. Rev. Lett.
97
(
18
),
188104
(
2006
);
[PubMed]
A. N.
Samukhin
,
S. N.
Dorogovtsev
, and
J. F. F.
Mendes
,
Phys. Rev. E
77
(
3
),
036115
(
2008
).
14.
T.
Watanabe
and
N.
Masuda
,
Phys. Rev. E
82
,
046102
(
2010
);
T. P.
Peixoto
,
Phys. Rev. Lett.
111
,
098701
(
2013
).
[PubMed]
15.
S. N.
Dorogovtsev
 et al,
Phys. Rev. E
68
,
046109
(
2003
).
16.
M. A. M.
deAguiar
and
Y.
Bar-Yam
,
Phys. Rev. E
71
,
016106
(
2005
).
17.
C.
Kamp
and
K.
Christensen
,
Phys. Rev. E
71
,
041911
(
2005
).
18.
S. A.
Teichmann
and
M. M.
Babu
,
Nat. Genet.
36
,
492
(
2004
).
19.
A.
Banerjee
and
J.
Jost
,
Linear Algebra Appl.
428
,
3015
(
2008
).
20.
D.
Poole
,
Linear Algebra: A Modern introduction
, 2nd ed. (
Brooks/Cole Cengage Learning
,
2006
).
21.
A. L.
Barabási
and
R.
Albert
,
Science
286
,
509
(
1999
).
22.
M.
Molloy
and
B.
Reed
,
Random Struct. Algorithms
6
(
23
),
161
(
1995
).
23.
M. E. J.
Newman
,
S. H.
Strogatz
, and
D. J.
Watts
,
Phys. Rev. E
64
,
026118
(
2001
).
24.
C. I.
del Genio
 et al,
PLoS One
5
,
e10012
(
2010
).
25.
G.
Tononi
,
O.
Sporns
, and
G. M.
Edelman
,
Proc. Natl. Acad. Sci. U.S.A.
96
(
6
),
3257
(
1999
).
26.
M.
Hurles
,
PLoS Biol.
2
,
e206
(
2004
).
27.
S. E.
Brenner
 et al,
Nature
378
,
140
(
1995
);
[PubMed]
S. A.
Teichmann
,
J.
Park
, and
C.
Chothia
,
Proc. Natl. Acad. Sci. U.S.A.
95
,
14658
(
1998
).
[PubMed]
28.
J.
Gough
 et al,
J. Mol. Biol.
313
,
903
(
2001
).
29.
Z.
Gu
 et al,
Nature
421
,
63
(
2003
).
30.
H.
Kitano
,
Nat. Rev. Genet.
5
,
826
(
2004
).
31.
M. A.
Nowak
 et al,
Nature
388
,
167
(
1997
).
You do not currently have access to this content.