The Lorenz-63 model has been frequently used to inform our understanding of the Earth's climate and provide insight for numerical weather and climate prediction. Most studies have focused on the autonomous (time invariant) model behaviour in which the model's parameters are constants. Here, we investigate the properties of the model under time-varying parameters, providing a closer parallel to the challenges of climate prediction, in which climate forcing varies with time. Initial condition (IC) ensembles are used to construct frequency distributions of model variables, and we interpret these distributions as the time-dependent climate of the model. Results are presented that demonstrate the impact of ICs on the transient behaviour of the model climate. The location in state space from which an IC ensemble is initiated is shown to significantly impact the time it takes for ensembles to converge. The implication for climate prediction is that the climate may—in parallel with weather forecasting—have states from which its future behaviour is more, or less, predictable in distribution. Evidence of resonant behaviour and path dependence is found in model distributions under time varying parameters, demonstrating that prediction in nonautonomous nonlinear systems can be sensitive to the details of time-dependent forcing/parameter variations. Single model realisations are shown to be unable to reliably represent the model's climate; a result which has implications for how real-world climatic timeseries from observation are interpreted. The results have significant implications for the design and interpretation of Global Climate Model experiments.

1.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
2.
E. N.
Lorenz
, “
Can chaos and intransitivity lead to interannual variability
,”
Tellus
42A
,
378
389
(
1990
).
3.
J. D.
Daron
and
D. A.
Stainforth
, “
On predicting climate under climate change
,”
Environ. Res. Lett.
8
(
3
),
034021
(
2013
).
4.
K.
Fraedrich
, “
Estimating the dimensions of weather and climate attractors
,”
J. Atmos. Sci.
43
,
419
432
(
1986
).
5.
IPCC
,
Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
(
Cambridge University Press
, Cambridge, United Kingdom and New York, NY,
USA
,
2013
), Chap. Annex III: Glossary.
6.
D. A.
Stainforth
,
M. R.
Allen
,
E. R.
Tredger
, and
L. A.
Smith
, “
Confidence, uncertainty and decision-support relevance in climate predictions
,”
Philos. Trans. R. Soc. A
365
,
2145
2161
(
2007
).
7.
M.
Lakshmanan
and
S.
Rajasekar
,
Nonlinear Dynamics: Integrability, Chaos and Patterns
(
Springer-Verlag
,
Berlin
, Heidelberg,
2003
), Chap. III, pp.
32
34
.
8.
M.
Chekroun
,
I.
Zaliapin
, and
M.
Ghil
, “
Pullback attractors in nonautonomous dynamical systems with delay: Applications to an enso model with seasonal forcing
,”
Geophysical Research Abstracts
(
EGU General Assembly
,
2010
), Vol.
12
.
9.
M. D.
Chekroun
,
E.
Simonnet
, and
M.
Ghil
, “
Stochastic climate dynamics: random attractors and time-independent invariant measures
,”
Physica D
240
(
21
),
1685
1700
(
2011
).
10.
M. D.
McDonnell
and
D.
Abbott
, “
What Is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology
,”
Plos Comput. Biol.
5
(
5
),
1
9
(
2009
).
11.
H. W.
Broer
and
G.
Vegter
, “
Resonance and singularities
,”
Progress and Challenges in Dynamical Systems
(
Springer Proceedings in Mathematics and Statistics
,
2013
).
12.
L.
Gammaitoni
,
P.
Hanggi
,
P.
Jung
, and
F.
Marchesoni
, “
Stochastic resonance
,”
Rev. Mod. Phys.
70
(
1
),
223
287
(
1998
).
13.
R.
Benzi
,
A.
Sutera
, and
A.
Vulpiani
, “
The mechanism of stochastic resonance
,”
J. Phys. A
14
,
L453
(
1981
).
14.
A.
Crisanti
,
M.
Falcioni
,
G.
Paladin
, and
A.
Vulpiani
, “
Stochastic resonance in deterministic chaotic systems
,”
J. Phys. A
27
,
L597
L603
(
1994
).
15.
A.
Sutera
, “
Stochastic perturbation of a pure convectie motion
,”
J. Atmos. Sci.
37
,
245
249
(
1980
).
16.
R.
Benzi
,
G.
Parisi
,
A.
Sutera
, and
A.
Vulpiani
, “
Stochastic resonance in climatic change
,”
Tellus
34
,
10
16
(
1982
).
17.
S. M.
Tobias
and
N. O.
Weiss
, “
Resonant interations between solar activity and climate
,”
J. Climate
13
,
3745
3759
(
2000
).
18.
R.
Benzi
, “
Stochastic resonance: From climate to biology
,”
Nonlin. Process. Geophys.
17
,
431
441
(
2010
).
19.
H.
von Storch
and
F. W.
Zwiers
,
Statistical Analysis in Climate Research
(
Cambridge University Press
, Cambridge,
UK/New York
,
1999
).
20.
J. C.
Sprott
,
Chaos and Time-Series Analysis
(
Oxford University Press
,
2003
).
21.
D.
Ruelle
, “
A measure associated with axiom-A attractors
,”
Am. J. Math.
98
(
3
),
137
151
(
1976
); available at http://www.jstor.org/discover/10.2307/2373810?sid=21106318970383&uid=4&uid=2129&uid=2&uid=70&uid=3738032.
22.
J. P.
Eckmann
and
D.
Ruelle
, “
Ergodic theory of chaos and strange attractors
,”
Rev. Mod. Phys.
57
(
3
),
617
656
(
1985
).
23.
S. H.
Schneider
,
W. E.
Easterling
, and
L. O.
Mearns
, “
Adaptation: Sensitivity to natural variability, agent assumptions, and dynamic climate changes
,”
Climatic Change
45
,
203
221
(
2000
).
24.
W.
Burroughs
,
Climate: Into the 21st Century
(
Cambridge University Press: World Meteorological Organisation
,
2003
).
25.
M.
New
,
M.
Hulme
, and
P.
Jones
, “
Representing twentieth-century space-time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology
,”
J. Clim.
12
,
829
856
(
1999
).
26.
WMO
,
Climatological Normals (CLINO) for the Period 1961–1990
(
WMO/OMM, World Meteorological Organisation
, Geneva,
Switzerland
,
1996
), pp.
847
, 768.
27.
J.
Lin
, “
Divergence measures based on the Shannon entropy
,”
IEEE Trans. Inf. Theory
37
(
1
),
145
151
(
1991
).
28.
M.
Tabor
,
Chaos and Integrability in Nonlinear Dynamics: An Introduction
(
Wiley
,
New York
,
1989
), p.
206
.
29.
T. N.
Palmer
, “
Extended-range atmospheric prediction and the Lorenz model
,”
Bull. Am. Meteorol. Soc.
74
,
49
65
(
1993
).
30.
S.
Strogatz
,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering
(
Perseus Books Group
,
1994
).
31.
See supplementary material at http://dx.doi.org/10.1063/1.4916789 for additional supporting figures.
32.
S.
Kullback
and
R. A.
Leibler
, “
On information and sufficiency
,”
Ann. Math. Stat.
22
(
1
),
79
86
(
1951
).
33.
WCRP
,
WCRP Coupled Model Intercomparison Project—Phase 5—CMIP5, CLIVAR Exchanges Special Issue
(
World Climate Research Programme
,
2011
), Vol.
16
.
34.
T. N.
Palmer
, “
A nonlinear dynamical perspective on climate prediction
,”
J. Clim.
12
,
575
591
(
1999
).
35.
D. J.
Lea
,
M. R.
Allen
, and
T. W. N.
Haine
, “
Sensitivity analysis of the climate of a chaotic system
,”
Tellus
52A
,
523
532
(
2000
).
36.
A. P.
Rothmayer
and
D. W.
Black
, “
Ensembles of the Lorenz attractor
,”
Proc. Math. Phys. Sci.
441
(
1912
),
291
312
(
1993
).
37.
C.
Sparrow
,
The Lorenz Equations: Bifurcations, Chaos and Strange Attractors, Vol. 41 of Applied Mathematical Sciences
(
Springer-Verlag
,
New York
Inc.,
1982
).
38.
V.
Lucarini
, “
Towards a definition of climate science
,”
Int. J. Environ. Pollut.
18
(
5
),
413
422
(
2002
).
39.
D. B.
Stephenson
,
M.
Collins
,
J. C.
Rougier
, and
R. E.
Chandler
, “
Statistical problems in the probabilistic prediction of climate change
,”
Environmetrics
23
(
5
),
364
372
(
2012
).
40.
J. R.
Petit
,
J.
Jouzel
,
D.
Raynaud
,
N. I.
Barkov
,
J.-M.
Barnola
,
I.
Basile
,
M.
Bender
,
J.
Chappellaz
,
M.
Davis
,
G.
Delaygue
,
M.
Delmotte
,
V. M.
Kotlyakov
,
M.
Legrand
,
V. Y.
Lipenkov
,
C.
Lorius
,
L.
Pepin
,
C.
Ritz
,
E.
Saltzman
, and
M.
Stievenard
, “
Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica
,”
Nature
399
,
429
436
(
1999
).
41.
M.
Ghil
, “
Natural climate variability
,” in
Encyclopedia of Global Environmental Change, Volume 1, The Earth System: Physical and Chemical Dimensions of Global Environmental Change
(
John Wiley and Sons, Ltd.
,
Chichester
,
2002
), pp.
544
549
.
42.
D.
Rind
, “
The Sun's role in climate variations
,”
Science
296
,
673
678
(
2002
).

Supplementary Material

You do not currently have access to this content.