We study the coupling induced destabilization in an array of identical oscillators coupled in a ring structure where the number of oscillators in the ring is large. The coupling structure includes different types of interactions with several next neighbors. We derive an amplitude equation of Ginzburg-Landau type, which describes the destabilization of a uniform stationary state and close-by solutions in the limit of a large number of nodes. Studying numerically an example of unidirectionally coupled Duffing oscillators, we observe a coupling induced transition to collective spatio-temporal chaos, which can be understood using the derived amplitude equations.

1.
2.
E.
Mosekilde
,
Y.
Maistrenko
, and
D.
Postnov
,
Chaotic Synchronization. Application to Living Systems
(
World Scientific
,
2002
), p.
428
.
3.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization. A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
2001
), p.
432
.
4.
G. B.
Ermentrout
and
D.
Kleinfeld
,
Neuron
29
,
33
(
2001
).
5.
A.
Pikovsky
and
M.
Rosenblum
, in
Synchronization: Theory and Application
, edited by
A.
Pikovsky
and
Y.
Maistrenko
(
Kluwer
,
Dordrecht
,
2003
), pp.
187
219
.
6.
G. V.
Osipov
,
B.
Hu
,
C.
Zhou
,
M. V.
Ivanchenko
, and
J.
Kurths
,
Phys. Rev. Lett.
91
,
024101
(
2003
).
7.
A.
Kumar
,
S.
Rotter
, and
A.
Aertsen
,
Nat. Rev. Neurosci.
11
,
615
(
2010
).
8.
R.
Dodla
,
A.
Sen
, and
G. L.
Johnston
,
Phys. Rev. E
69
,
056217
(
2004
).
9.
D. M.
Abrams
and
S. H.
Strogatz
,
Phys. Rev. Lett.
93
,
174102
(
2004
).
10.
O.
Omelchenko
,
Y.
Maistrenko
, and
P. A.
Tass
,
Phys. Rev. Lett.
100
,
044105
(
2008
).
11.
G. C.
Sethia
,
A.
Sen
, and
F. M.
Atay
,
Phys. Rev. Lett.
100
,
144102
(
2008
).
12.
M.
Wolfrum
,
O. E.
Omel'chenko
,
S.
Yanchuk
, and
Y. L.
Maistrenko
,
Chaos
21
,
013112
(
2011
).
13.
H.
Nakao
and
A.
Mikhailov
,
Nat. Phys.
6
,
544
(
2010
).
14.
S.
Yanchuk
and
M.
Wolfrum
,
Phys. Rev. E
77
,
026212
(
2008
).
15.
P.
Perlikowski
,
S.
Yanchuk
,
O. V.
Popovych
, and
P. A.
Tass
,
Phys. Rev. E
82
,
036208
(
2010
).
16.
S.
Yanchuk
,
P.
Perlikowski
,
O. V.
Popovych
, and
P. A.
Tass
,
Chaos
21
,
047511
(
2011
).
17.
W.
Eckhaus
,
Studies in Non-Linear Stability Theory
, Springer Tracts in Natural Philosophy Vol.
6
(
Springer
,
New York
,
1965
), p.
117
.
18.
P.
Perlikowski
,
S.
Yanchuk
,
M.
Wolfrum
,
A.
Stefanski
,
P.
Mosiolek
, and
T.
Kapitaniak
,
Chaos
20
,
013111
(
2010
).
19.
A. C.
Newell
and
J. A.
Whitehead
,
J. Fluid Mech.
38
,
279
(
1969
).
20.
Analysis, Modeling and Simulation of Multiscale Problems
, edited by
A.
Mielke
(
Springer
,
Heidelberg
,
2006
), p.
697
.
21.
P.
Kirrmann
,
G.
Schneider
, and
A.
Mielke
,
Proc. Roy. Soc. Edinburgh Sect. A
122
,
85
(
1992
).
22.
G.
Schneider
,
Z. Angew. Math. Phys. (ZAMP)
45
,
433
(
1994
).
23.
S.
Yanchuk
,
L.
Lücken
,
M.
Wolfrum
, and
A.
Mielke
,
Discrete Contin. Dyn. Syst. A
35
,
537
(
2015
).
24.
S.
Yanchuk
and
G.
Giacomelli
,
Phys. Rev. Lett.
112
,
174103
(
2014
).
25.
L.
Tuckerman
and
D.
Barkley
,
Phys. Rev. Lett.
67
,
1051
(
1991
).
26.
M. C.
Cross
and
P. C.
Hohenberg
,
Rev. Mod. Phys.
65
,
851
(
1993
).
27.
M.
Cross
and
H.
Greenside
,
Pattern Formation and Dynamics in Nonequilibrium Systems
(
Cambridge University Press
,
2009
).
28.
L. M.
Pecora
and
T. L.
Carroll
,
Phys. Rev. Lett.
80
,
2109
(
1998
).
29.
A.
Mielke
,
Handbook of Dynamical Systems
(
North-Holland
,
Amsterdam
,
2002
), Vol.
2
, pp.
759
834
.
30.
B.
Shraiman
,
A.
Pumir
,
W.
van Saarloos
,
P.
Hohenberg
,
H.
Chaté
, and
M.
Holen
,
Physica D
57
,
241
(
1992
).
32.
D. A.
Egolf
and
H. S.
Greenside
,
Phys. Rev. Lett.
74
,
1751
(
1995
).
33.
G.
Giacomelli
and
A.
Politi
,
Europhys. Lett.
15
,
387
(
1991
).
34.
T.
Kapitaniak
and
W. H.
Steeb
,
Phys. Lett. A
152
,
33
(
1991
).
35.
T.
Kapitaniak
,
Phys. Rev. E
47
,
R2975
(
1993
).
36.
G.
Giacomelli
,
R.
Meucci
,
A.
Politi
, and
F. T.
Arecchi
,
Phys. Rev. Lett.
73
,
1099
(
1994
).
37.
M.
Wolfrum
and
S.
Yanchuk
,
Phys. Rev. Lett.
96
,
220201
(
2006
).
You do not currently have access to this content.