Closeness centrality (CC) measure, as a well-known global measure, is widely applied in many complex networks. However, the classical CC presents many problems for flow networks since these networks are directed and weighted. To address these issues, we propose an effective distance based closeness centrality (EDCC), which uses effective distance to replace conventional geographic distance and binary distance obtained by Dijkstra's shortest path algorithm. The proposed EDCC considers not only the global structure of the network but also the local information of nodes. And it can be well applied in directed or undirected, weighted or unweighted networks. Susceptible-Infected model is utilized to evaluate the performance by using the spreading rate and the number of infected nodes. Numerical examples simulated on four real networks are given to show the effectiveness of the proposed EDCC.

1.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of ‘small-world’ networks
,”
Nature
393
,
440
442
(
1998
).
2.
S. H.
Strogatz
, “
Exploring complex networks
,”
Nature
410
,
268
276
(
2001
).
3.
F.
Perakis
and
G.
Tsironis
, “
Discrete nonlinear Schrödinger equation dynamics in complex networks
,”
Phys. Lett. A
375
,
676
679
(
2011
).
4.
H.
Yang
and
G.
Liu
, “
Self-organized topology of recurrence-based complex networks
,”
Chaos
23
,
043116
(
2013
).
5.
W. J.
Yuan
,
J. F.
Zhou
,
Q.
Li
,
D. B.
Chen
, and
Z.
Wang
, “
Spontaneous scale-free structure in adaptive networks with synchronously dynamical linking
,”
Phys. Rev. E
88
,
022818
(
2013
).
6.
J.
Liu
,
Y.
Li
,
Z.
Ruan
,
G.
Fu
,
X.
Chen
,
R.
Sadiq
, and
Y.
Deng
, “
A new method to construct co-author networks
,”
Physica A
419
,
29
39
(
2015
).
7.
L. C.
Freeman
, “
Centrality in social networks conceptual clarification
,”
Social Networks
1
,
215
239
(
1978
).
8.
P.
Bonacich
and
P.
Lloyd
, “
Eigenvector-like measures of centrality for asymmetric relations
,”
Social Networks
23
,
191
201
(
2001
).
9.
L. C.
Freeman
,
S. P.
Borgatti
, and
D. R.
White
, “
Centrality in valued graphs: A measure of betweenness based on network flow
,”
Social Networks
13
,
141
154
(
1991
).
10.
K. E.
Joyce
,
P. J.
Laurienti
,
J. H.
Burdette
, and
S.
Hayasaka
, “
A new measure of centrality for brain networks
,”
PLoS One
5
,
e12200
(
2010
).
11.
T.
Opsahl
,
F.
Agneessens
, and
J.
Skvoretz
, “
Node centrality in weighted networks: Generalizing degree and shortest paths
,”
Social Networks
32
,
245
251
(
2010
).
12.
L.
,
Y. C.
Zhang
,
C. H.
Yeung
, and
T.
Zhou
, “
Leaders in social networks, the delicious case
,”
PloS One
6
,
e21202
(
2011
).
13.
H.
Kim
and
R.
Anderson
, “
Temporal node centrality in complex networks
,”
Phys. Rev. E
85
,
026107
(
2012
).
14.
L.
Solá
,
M.
Romance
,
R.
Criado
,
J.
Flores
,
A. G.
del Amo
, and
S.
Boccaletti
, “
Eigenvector centrality of nodes in multiplex networks
,”
Chaos
23
,
033131
(
2013
).
15.
R.
Pastor-Satorras
and
A.
Vespignani
, “
Epidemic spreading in scale-free networks
,”
Phys. Rev. Lett.
86
,
3200
(
2001
).
16.
S. V.
Buldyrev
,
R.
Parshani
,
G.
Paul
,
H. E.
Stanley
, and
S.
Havlin
, “
Catastrophic cascade of failures in interdependent networks
,”
Nature
464
,
1025
1028
(
2010
).
17.
J.
Zhang
,
X. K.
Xu
,
P.
Li
,
K.
Zhang
, and
M.
Small
, “
Node importance for dynamical process on networks: A multiscale characterization
,”
Chaos
21
,
016107
(
2011
).
18.
Z.
Wang
,
L.
Wang
, and
M.
Perc
, “
Degree mixing in multilayer networks impedes the evolution of cooperation
,”
Phys. Rev. E
89
,
052813
(
2014
).
19.
Q.
Jin
,
L.
Wang
,
C. Y.
Xia
, and
Z.
Wang
, “
Spontaneous symmetry breaking in interdependent networked game
,”
Sci. Rep.
4
,
4095
(
2014
).
20.
D.
Chen
,
L.
,
M. S.
Shang
,
Y. C.
Zhang
, and
T.
Zhou
, “
Identifying influential nodes in complex networks
,”
Physica A
391
,
1777
1787
(
2012
).
21.
C.
Gao
,
D.
Wei
,
Y.
Hu
,
S.
Mahadevan
, and
Y.
Deng
, “
A modified evidential methodology of identifying influential nodes in weighted networks
,”
Physica A
392
,
5490
5500
(
2013
).
22.
M. E.
Newman
, “
Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality
,”
Phys. Rev. E
64
,
016132
(
2001
).
23.
P. V.
Marsden
, “
Egocentric and sociocentric measures of network centrality
,”
Social Networks
24
,
407
422
(
2002
).
24.
O.
Sporns
,
C. J.
Honey
, and
R.
Kötter
, “
Identification and classification of hubs in brain networks
,”
PloS One
2
,
e1049
(
2007
).
25.
E.
Yan
and
Y.
Ding
, “
Applying centrality measures to impact analysis: A coauthorship network analysis
,”
J. Am. Soc. Inf. Sci. Technol.
60
,
2107
2118
(
2009
).
26.
D.
Brockmann
and
D.
Helbing
, “
The hidden geometry of complex, network-driven contagion phenomena
,”
Science
342
,
1337
1342
(
2013
).
27.
A.
Barrat
,
M.
Barthelemy
,
R.
Pastor Satorras
, and
A.
Vespignani
, “
The architecture of complex weighted networks
,”
Proc. Natl. Acad. Sci. U.S.A.
101
,
3747
3752
(
2004
).
28.
U.
Brandes
, “
A faster algorithm for betweenness centrality
,”
J. Math. Sociol.
25
,
163
177
(
2001
).
29.
E. W.
Dijkstra
, “
A note on two problems in connexion with graphs
,”
Numer. Math.
1
,
269
271
(
1959
).
30.
M. E.
Newman
, “
Finding community structure in networks using the eigenvectors of matrices
,”
Phys. Rev. E
74
,
036104
(
2006
).
31.
V.
Colizza
,
R.
Pastor-Satorras
, and
A.
Vespignani
, “
Reaction–diffusion processes and metapopulation models in heterogeneous networks
,”
Nat. Phys.
3
,
276
282
(
2007
).
32.
M. E.
Newman
, “
Assortative mixing in networks
,”
Phys. Rev. Lett.
89
,
208701
(
2002
).
33.
H. B.
Hu
and
X. F.
Wang
, “
Unified index to quantifying heterogeneity of complex networks
,”
Physica A
387
,
3769
3780
(
2008
).
34.
T.
Zhou
,
J. G.
Liu
,
W. J.
Bai
,
G.
Chen
, and
B. H.
Wang
, “
Behaviors of susceptible-infected epidemics on scale-free networks with identical infectivity
,”
Phys. Rev. E
74
,
056109
(
2006
).
35.
W. J.
Bai
,
T.
Zhou
, and
B. H.
Wang
, “
Immunization of susceptible–infected model on scale-free networks
,”
Physica A
384
,
656
662
(
2007
).
36.
M.
Karsai
,
M.
Kivelä
,
R. K.
Pan
,
K.
Kaski
,
J.
Kertész
,
A. L.
Barabási
, and
J.
Saramäki
, “
Small but slow world: How network topology and burstiness slow down spreading
,”
Phys. Rev. E
83
,
025102
(
2011
).
37.
D.
Wei
,
X.
Deng
,
X.
Zhang
,
Y.
Deng
, and
S.
Mahadevan
, “
Identifying influential nodes in weighted networks based on evidence theory
,”
Physica A
392
,
2564
2575
(
2013
).
38.
Y.
Gang
,
Z.
Tao
,
W.
Jie
,
F.
Zhong Qian
, and
W.
Bing Hong
, “
Epidemic spread in weighted scale-free networks
,”
Chin. Phys. Lett.
22
,
510
513
(
2005
).
39.
M. G.
Kendall
, “
A new measure of rank correlation
,”
Biometrika
30
,
81
93
(
1938
).
40.
M. G.
Kendall
, “
The treatment of ties in ranking problems
,”
Biometrika
33
,
239
251
(
1945
).
41.
J.
Kang
,
L.
Wang
,
C.
Yan
,
J.
Wang
,
X.
Liang
, and
Y.
He
, “
Characterizing dynamic functional connectivity in the resting brain using variable parameter regression and Kalman filtering approaches
,”
Neuroimage
56
,
1222
1234
(
2011
).
42.
R.
Criado
,
E.
Garcia
,
F.
Pedroche
, and
M.
Romance
, “
A new method for comparing rankings through complex networks: Model and analysis of competitiveness of major European soccer leagues
,”
Chaos
23
,
043114
(
2013
).
43.
T.
Preis
,
H. S.
Moat
, and
H. E.
Stanley
, “
Quantifying trading behavior in financial markets using google trends
,”
Sci. Rep.
3
,
1684
(
2013
).
44.
S.
Gao
,
J.
Ma
,
Z.
Chen
,
G.
Wang
, and
C.
Xing
, “
Ranking the spreading ability of nodes in complex networks based on local structure
,”
Physica A
403
,
130
147
(
2014
).
You do not currently have access to this content.