Unstable nonchaotic solutions embedded in the chaotic attractor can provide significant new insight into chaotic dynamics of both low- and high-dimensional systems. In particular, in turbulent fluid flows, such unstable solutions are referred to as exact coherent structures (ECS) and play an important role in both initiating and sustaining turbulence. The nature of ECS and their role in organizing spatiotemporally chaotic dynamics, however, is reasonably well understood only for systems on relatively small spatial domains lacking continuous Euclidean symmetries. Construction of ECS on large domains and in the presence of continuous translational and/or rotational symmetries remains a challenge. This is especially true for models of excitable media which display spiral turbulence and for which the standard approach to computing ECS completely breaks down. This paper uses the Karma model of cardiac tissue to illustrate a potential approach that could allow computing a new class of ECS on large domains of arbitrary shape by decomposing them into a patchwork of solutions on smaller domains, or tiles, which retain Euclidean symmetries locally.

1.
H.
Poincaré
,
Les Méthodes Nouvelles de la Méchanique Céleste
(
Gauthier-Villars
,
1899
).
2.
M. C.
Gutzwiller
, “
Periodic orbits and classical quantization conditions
,”
J. Math. Phys.
12
,
343
358
(
1971
).
3.
F.
Christiansen
,
P.
Cvitanović
, and
V.
Putkaradze
, “
Spatiotemporal chaos in terms of unstable recurrent patterns
,”
Nonlinearity
10
,
55
70
(
1997
); arXiv:chao-dyn/9606016.
4.
Y.
Lan
and
P.
Cvitanović
, “
Unstable recurrent patterns in Kuramoto-Sivashinsky dynamics
,”
Phys. Rev. E
78
,
026208
(
2008
); arXiv:0804.2474.
5.
V.
López
,
P.
Boyland
,
M. T.
Heath
, and
R. D.
Moser
, “
Relative periodic solutions of the complex Ginzburg-Landau equation
,”
SIAM J. Appl. Dyn. Syst.
4
,
1042
1075
(
2006
); arXiv:nlin/0408018.
6.
D.
Viswanath
, “
Recurrent motions within plane Couette turbulence
,”
J. Fluid Mech.
580
,
339
(
2007
).
7.
J. F.
Gibson
,
J.
Halcrow
, and
P.
Cvitanović
, “
Visualizing the geometry of state-space in plane Couette flow
,”
J. Fluid Mech.
611
,
107
130
(
2008
); arXiv:0705.3957.
8.
A.
Meseguer
,
F.
Mellibovsky
,
M.
Avila
, and
F.
Marques
, “
Families of subcritical spirals in highly counter-rotating Taylor-Couette flow
,”
Phys. Rev. E
79
,
036309
(
2009
).
9.
A.
de Lozar
,
F.
Mellibovsky
,
M.
Avila
, and
B.
Hof
, “
Edge state in pipe flow experiments
,”
Phys. Rev. Lett.
108
,
214502
(
2012
).
10.
G. J.
Chandler
and
R. R.
Kerswell
, “
Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow
,”
J. Fluid Mech.
722
,
554
595
(
2013
).
11.
R. E.
Ideker
,
X.
Zhou
, and
S. B.
Knisley
, “
Correlation among fibrillation, defibrillation, and cardiac pacing
,”
Pacing Clin. Electrophysiol.
18
,
512
525
(
1995
).
12.
G. P.
Walcott
,
C. R.
Killingsworth
, and
R. E.
Ideker
, “
Do clinically relevant transthoracic defibrillation energies cause myocardial damage and dysfunction?
,”
Resuscitation
59
,
59
70
(
2003
).
13.
S.
Luther
,
F. H.
Fenton
,
B. G.
Kornreich
,
A.
Squires
,
P.
Bittihn
,
D.
Hornung
,
M.
Zabel
,
J.
Flanders
,
A.
Gladuli
,
L.
Campoy
,
E. M.
Cherry
,
G.
Luther
,
G.
Hasenfuss
,
V. I.
Krinsky
,
A.
Pumir
,
R. F.
Gilmour
, and
E.
Bodenschatz
, “
Low-energy control of electrical turbulence in the heart
,”
Nature
475
,
235
239
(
2011
).
14.
D.
Barkley
, “
Linear stability analysis of rotating spiral waves in excitable media
,”
Phys. Rev. Lett.
68
,
2090
2093
(
1992
).
15.
H.
Henry
and
V.
Hakim
, “
Scroll waves in isotropic excitable media: Linear instabilities, bifurcations, and restabilized states
,”
Phys. Rev. E
65
,
046235
(
2002
).
16.
W.-J.
Beyn
and
V.
Thümmler
, “
Freezing solutions of equivariant evolution equations
,”
SIAM J. Appl. Dyn. Syst.
3
,
85
116
(
2004
).
17.
C.
Marcotte
and
R. O.
Grigoriev
, “
Unstable spiral waves and local Euclidean symmetry in a model of cardiac tissue
,”
Chaos
(submitted); arXiv:1412.4731.
18.
T.
Bohr
,
G.
Huber
, and
E.
Ott
, “
The structure of spiral domain patterns
,”
Europhys. Lett.
33
,
589
(
1996
).
19.
T.
Bohr
,
G.
Huber
, and
E.
Ott
, “
The structure of spiral-domain patterns and shocks in the 2D complex Ginzburg-Landau equation
,”
Physica D
106
,
95
112
(
1997
).
20.
A.
Karma
, “
Electrical alternans and spiral wave breakup in cardiac tissue
,”
Chaos
4
,
461
472
(
1994
).
21.
C. G.
Bevans
,
M.
Kordel
,
S. K.
Rhee
, and
A. L.
Harris
, “
Isoform composition of connexin channels determines selectivity among second messengers and uncharged molecules
,”
J. Biol. Chem.
273
,
2808
2816
(
1998
).
22.
D.
Garcia-Dorado
,
A.
Rodriguez-Sinovas
, and
M.
Ruiz-Meana
, “
Gap junction-mediated spread of cell injury and death during myocardial ischemia-reperfusion
,”
Cardiovasc. Res.
61
,
386
401
(
2004
).
23.
D.
Auerbach
,
P.
Cvitanović
,
J.-P.
Eckmann
,
G.
Gunaratne
, and
I.
Procaccia
, “
Exploring chaotic motion through periodic orbits
,”
Phys. Rev. Lett.
58
,
23
(
1987
).
24.
P.
Cvitanović
and
J. F.
Gibson
, “
Geometry of turbulence in wall-bounded shear flows: Periodic orbits
,”
Phys. Scr.
T142
,
014007
(
2010
).
25.
I. S.
Aranson
and
L.
Kramer
, “
The world of the complex ginzburg-landau equation
,”
Rev. Mod. Phys.
74
,
99
143
(
2002
).
26.
H.
Kantz
,
Nonlinear Time Series Analysis
, 2nd ed. (
Cambridge University Press
,
Cambridge, UK
; New York,
2004
).
27.
M.
Zhan
,
J.
Luo
, and
J.
Gao
, “
Chirality effect on the global structure of spiral-domain patterns in the two-dimensional complex Ginzburg-Landau equation
,”
Phys. Rev. E
75
,
016214
(
2007
).
28.
D.
Barkley
,
M.
Kness
, and
L. S.
Tuckerman
, “
Spiral wave dynamics in a simple model of excitable media: Transition from simple to compound rotation
,”
Phys. Rev. A
42
,
2489
2492
(
1990
).
29.
J.
Luo
,
B.
Zhang
, and
M.
Zhan
, “
Frozen state of spiral waves in excitable media
,”
Chaos
19
,
033133
(
2009
).
30.
L. N.
Howard
and
N.
Kopell
, “
Slowly varying waves and shock structures in reaction-diffusion equations
,”
Studies Appl. Math.
56
,
95
145
(
1977
).
31.
V. I.
Krinsky
and
K. I.
Agladze
, “
Interaction of rotating waves in an active chemical medium
,”
Physica D
8
,
50
56
(
1983
).
32.
J.
Langham
and
D.
Barkley
, “
Non-specular reflections in a macroscopic system with wave-particle duality: Spiral waves in bounded media
,”
Chaos
23
,
013134
(
2013
); arXiv:1304.0591.
33.
J.
Langham
,
I.
Biktasheva
, and
D.
Barkley
, “
Asymptotic theory for spiral wave reflections
,” (
2014
), arXiv:11401.7626.
34.
B.
Fiedler
,
B.
Sandstede
,
A.
Scheel
, and
C.
Wulff
, “
Bifurcation from relative equilibria of noncompact group actions: Skew products, meanders, and drifts
,”
Doc. Math.
141
,
479
505
(
1996
).
35.
B.
Fiedler
and
D.
Turaev
, “
Normal forms, resonances, and meandering tip motions near relative equilibria of Euclidean group actions
,”
Arch. Rational Mech. Anal.
145
,
129
159
(
1998
).
36.
B.
Sandstede
,
A.
Scheel
, and
C.
Wulff
, “
Dynamics of spiral waves on unbounded domains using center-manifold reductions
,”
J. Diff. Eq.
141
,
122
149
(
1997
).
37.
B.
Sandstede
,
A.
Scheel
, and
C.
Wulff
, “
Dynamical behavior of patterns with Euclidean symmetry
,” in
Pattern Formation in Continuous and Coupled Systems
(
Springer
,
New York
,
1999
), pp.
249
264
.
38.
I. V.
Biktasheva
,
D.
Barkley
,
V. N.
Biktashev
,
G. V.
Bordyugov
, and
A. J.
Foulkes
, “
Computation of the response functions of spiral waves in active media
,”
Phys. Rev. E
79
,
056702
(
2009
).
39.
I. V.
Biktasheva
,
V. N.
Biktashev
, and
A. J.
Foulkes
, “
Computation of the drift velocity of spiral waves using response functions
,”
Phys. Rev. E
81
,
066202
(
2010
).
40.
N. G.
Sepulveda
,
B. J.
Roth
, and
J. P.
Wikswo
, Jr.
, “
Current injection into a two-dimensional anisotropic bidomain
,”
Biophys. J.
55
,
987
999
(
1989
).
41.
E.
Alvarez-Lacalle
and
B.
Echebarria
, “
Global coupling in excitable media provides a simplified description of mechanoelectrical feedback in cardiac tissue
,”
Phys. Rev. E
79
,
031921
(
2009
).
You do not currently have access to this content.