In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D2), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes.

1.
M. P.
van den Heuvel
and
O.
Sporns
,
J. Neurosci.
31
,
15775
(
2011
).
2.
O.
Sporns
,
Ann. N.Y. Acad Sci.
1224
,
109
(
2011
).
3.
E.
Bullmore
and
O.
Sporns
,
Nat. Rev. Neurosci.
13
,
336
(
2012
).
4.
O.
Sporns
,
Curr. Opin. Neurobiol.
23
,
162
171
(
2013
).
5.
D. R.
Chialvo
,
Nat. Phys.
6
,
744
(
2010
).
6.
E.
Tagliazucchi
and
D. R.
Chialvo
,
AIP Conf. Proc.
1510
,
4
(
2013
).
7.
J.
Cabral
,
M. L.
Kringelbach
, and
G.
Deco
,
Prog. Neurobiol.
114
,
102
(
2014
).
8.
J.
Cabral
,
E.
Hugues
,
O.
Sporns
, and
G.
Deco
,
Neuroimage
57
,
130
(
2011
).
9.
A.
Haimovici
,
E.
Tagliazucchi
,
P.
Balenzuela
, and
D. R.
Chialvo
,
Phys. Rev. Lett.
110
,
178101
(
2013
)
10.
S.
Yu
,
H.
Yang
,
O.
Shriki
, and
D.
Plenz
,
Front. Syst. Neurosci.
7
,
42
(
2013
).
11.
M. D.
Fox
and
M. E.
Raichle
,
Nat. Rev. Neurosci.
8
,
700
(
2007
).
12.
M. E.
Raichle
,
Trends Cogn. Sci.
14
,
180
(
2010
).
13.
R. L.
Buckner
,
J.
Sepulcre
,
T.
Talukdar
,
F. M.
Krienen
,
H.
Liu
,
T.
Hedden
,
J. R.
Andrews-Hanna
,
R. A.
Sperling
, and
K. A.
Johnson
,
J. Neurosci.
29
,
1860
(
2009
).
14.
M. P.
van den Heuvel
,
R. C.
Mandl
,
R. S.
Kahn
, and
H. E.
Hulshoff Pol
,
Hum. Brain Mapp.
30
,
3127
(
2009
).
15.
D.
Tomasi
and
N. D.
Volkow
,
Neuroimage
57
,
908
(
2011
).
16.
L.
Minati
,
A.
Nigri
,
M.
Cercignani
, and
D.
Chan
,
Med. Eng. Phys.
35
,
1525
(
2013
).
17.
N. K.
Logothetis
,
Nature
453
,
869
(
2008
).
18.
J. C.
Brooks
,
O. K.
Faull
,
K. T.
Pattinson
, and
M.
Jenkinson
,
Front. Hum. Neurosci.
7
,
623
(
2013
).
19.
B. J.
He
,
Trends Cogn. Sci.
18
,
480
(
2014
).
20.
M.
Rubinov
and
E.
Bullmore
,
Trends Cogn. Sci.
17
,
641
(
2013
).
21.
E.
Tagliazucchi
,
P.
Balenzuela
,
D.
Fraiman
, and
D. R.
Chialvo
,
Front. Physiol.
3
,
15
(
2012
).
22.
R. M.
Hutchison
,
T.
Womelsdorf
,
E. A.
Allen
,
P. A.
Bandettini
,
V. D.
Calhoun
,
M.
Corbetta
,
S.
Della Penna
,
J. H.
Duyn
,
G. H.
Glover
,
J.
Gonzalez-Castillo
,
D. A.
Handwerker
,
S.
Keilholz
,
V.
Kiviniemi
,
D. A.
Leopold
,
F.
de Pasquale
,
O.
Sporns
,
M.
Walter
, and
C.
Chang
,
Neuroimage
80
,
360
(
2013
).
23.
C. J.
Stam
,
Clin. Neurophysiol.
116
,
2266
(
2005
).
24.
T.
Takahashi
,
Prog. Neuropsychopharmacol. Biol. Psychiatry
45
,
258
(
2013
).
25.
L. D.
Landau
and
E. M.
Lifshitz
,
Statistical Physics Part 1
(
Butterworth
-
Heinemann, Oxford
,
2003
).
26.
E.
Ott
,
Chaos in Dynamical Systems
(
Cambridge University Press
,
Cambridge
,
2002
).
27.
R.
Hilborn
,
Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers Paperback
(
Oxford University Press
,
Oxford
,
2001
).
28.
Q. H.
Zou
,
C. Z.
Zhu
,
Y.
Yang
,
X. N.
Zuo
,
X. Y.
Long
,
Q.
Cao
,
Y. F.
Wang
, and
Y. F.
Zang
,
J. Neurosci. Methods
172
,
137
(
2008
).
29.
K.
Kalcher
,
R. N.
Boubela
,
W.
Huf
,
L.
Bartova
,
C.
Kronnerwetter
,
B.
Derntl
,
L.
Pezawas
,
P.
Filzmoser
,
C.
Nasel
, and
E.
Moser
,
PLoS One
9
,
e93375
(
2014
).
30.
G.
Deco
and
V. K.
Jirsa
,
J. Neurosci.
32
,
3366
(
2012
).
31.
L.
Minati
,
Chaos
24
,
033110
(
2014
).
32.
L.
Minati
,
Chaos
24
,
043108
(
2014
).
33.
K.
Uğurbil
,
J.
Xu
,
E. J.
Auerbach
,
S.
Moeller
,
A. T.
Vu
,
J. M.
Duarte-Carvajalino
,
C.
Lenglet
,
X.
Wu
,
S.
Schmitter
,
P. F.
Van de Moortele
,
J.
Strupp
,
G.
Sapiro
,
F.
De Martino
,
D.
Wang
,
N.
Harel
,
M.
Garwood
,
L.
Chen
,
D. A.
Feinberg
,
S. M.
Smith
,
K. L.
Miller
,
S. N.
Sotiropoulos
,
S.
Jbabdi
,
J. L.
Andersson
,
T. E.
Behrens
,
M. F.
Glasser
,
D. C.
Van Essen
, and
E.
Yacoub
,
Neuroimage
80
,
80
(
2013
).
34.
S. M.
Smith
,
C. F.
Beckmann
,
J.
Andersson
,
E. J.
Auerbach
,
J.
Bijsterbosch
,
G.
Douaud
,
E.
Duff
,
D. A.
Feinberg
,
L.
Griffanti
,
M. P.
Harms
,
M.
Kelly
,
T.
Laumann
,
K. L.
Miller
,
S.
Moeller
,
S.
Petersen
,
J.
Power
,
G.
Salimi-Khorshidi
,
A. Z.
Snyder
,
A. T.
Vu
,
M. W.
Woolrich
,
J.
Xu
,
E.
Yacoub
,
K.
Uğurbil
,
D. C.
Van Essen
, and
M. F.
Glasser
,
Neuroimage
80
,
144
(
2013
).
35.
M. F.
Glasser
,
S. N.
Sotiropoulos
,
J. A.
Wilson
,
T. S.
Coalson
,
B.
Fischl
,
J. L.
Andersson
,
J.
Xu
,
S.
Jbabdi
,
M.
Webster
,
J. R.
Polimeni
,
D. C.
Van Essen
, and
M.
Jenkinson
,
Neuroimage
80
,
105
(
2013
).
36.
See www.fil.ion.ucl.ac.uk/spm/software/spm8 for SPM8 software and related publications.
37.
L.
Minati
,
D.
Zacà
,
L.
D'Incerti
, and
J.
Jovicich
,
Med. Eng. Phys.
36
,
1212
(
2014
).
38.
H.
Kantz
and
T.
Schreiber
,
Nonlinear Time Series Analysis
(
Cambridge University Press
,
Cambridge
,
1997
).
39.
R.
Hegger
,
B.
Kantz
, and
T.
Schreiber
,
Chaos
9
,
413
(
1999
).
40.
See www.mpipks-dresden.mpg.de/~tisean for TISEAN software and related publications.
41.
J.
Theiler
and
S.
Eubank
,
Chaos
3
,
771
(
1993
).
42.
P.
Grassberger
,
R.
Hegger
,
H.
Kantz
,
C.
Schaffrath
, and
T.
Schreiber
,
Chaos
3
,
127
(
1993
).
43.
H.
Kantz
,
T.
Schreiber
,
I.
Hoffmann
,
T.
Buzug
,
G.
Pfister
,
L. G.
Flepp
,
J.
Simonet
,
R.
Badii
, and
E.
Brun
,
Phys. Rev. E
48
,
1529
(
1993
).
44.
T.
Schreiber
and
A.
Schmitz
,
Phys. Rev. Lett.
77
,
635
(
1996
).
45.
F.
Takens
,
Dynamical Systems and Bifurcations
, Lecture Notes in Mathematics, Vol.
1125
(
Springer
,
New York
,
1985
), pp.
99
106
.
46.
M.
Fraser
and
H. L.
Swinney
,
Phys. Rev. A
33
,
1134
(
1986
).
47.
M. B.
Kennel
,
R.
Brown
, and
H. D. I.
Abarbanel
,
Phys. Rev. A
45
,
3403
(
1992
).
48.
J.
Theiler
,
J. Opt. Soc. Am. A
7
,
1055
(
1990
).
49.
A.
Provenzale
,
L. A.
Smith
,
R.
Vio
, and
G.
Murante
,
Physica D
58
,
31
(
1992
).
50.
P.
Grassberger
and
I.
Procaccia
,
Physica D
9
,
189
(
1983
).
51.
T.
Schreiber
,
Phys. Rev. Lett.
78
,
843
(
1997
).
52.
J. K.
Mai
,
G.
Paxinos
, and
T.
Voss
,
Atlas of the Human Brain
(
Academic Press
,
Waltham, MA, USA
,
2007
).
53.
A. E.
Cavanna
and
M. R.
Trimble
,
Brain
129
,
564
(
2006
).
54.
H.
Peng
,
F.
Long
, and
C.
Ding
,
IEEE Trans. Pattern Anal. Mach. Intell.
27
,
1226
(
2005
).
55.
N. X.
Vinh
and
J.
Epps
,
J. Mach. Learn. Res.
11
,
2837
(
2010
).
56.
M. E. J.
Newman
,
Phys. Rev. E
70
,
056131
(
2004
).
57.
See supplementary material at http://dx.doi.org/10.1063/1.4914938 for additional statistics table.
58.
G.
Deco
,
V. K.
Jirsa
, and
A. R.
McIntosh
,
Nat. Rev. Neurosci.
12
,
43
(
2011
).
59.
Q.
Zou
,
C. W.
Wu
,
E. A.
Stein
,
Y.
Zang
, and
Y.
Yang
,
Neuroimage
48
,
515
(
2009
).
60.
X.
Di
,
E. H.
Kim
,
C. C.
Huang
,
S. J.
Tsai
,
C. P.
Lin
, and
B. B.
Biswal
,
Front. Hum. Neurosci.
7
,
118
(
2013
).
61.
C.
Triantafyllou
,
J. R.
Polimeni
, and
L. L.
Wald
,
Neuroimage
55
,
597
(
2011
).
62.
M.
Smal
,
D.
Yu
,
J.
Simonotto
,
R. G.
Harrison
,
N.
Grubb
, and
K. A. A.
Fox
,
Chaos Solitons Fractals
13
,
1755
(
2002
).
63.
M. P.
Hanias
and
G. S.
Tombras
,
Chaos Solitons Fractals
40
,
246
(
2009
).
64.
T.
Gautama
,
D. P.
Mandic
, and
M. M.
Van Hulle
,
IEEE Trans. Med. Imaging
22
,
636
(
2003
).
65.
X.
Xie
,
Z.
Cao
, and
X.
Weng
,
Neuroimage
40
,
1672
(
2008
).
66.
G.
Deco
,
V.
Jirsa
,
A. R.
McIntosh
,
O.
Sporns
, and
R.
Kötter
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
10302
(
2009
).
67.
A.
Rădulescu
and
L. R.
Mujica-Parodi
,
Neuroimage
90
,
436
(
2014
).
68.
S.
Boccaletti
,
J.
Kurths
,
G.
Osipov
,
D. L.
Valladares
, and
C. S.
Zhou
,
Phys. Rep.
366
,
1
(
2002
).
69.
B. J.
MacLennan
,
Int. J. Gen. Syst.
43
,
682
(
2014
).
70.
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D.-U.
Hwang
,
Phys. Rep.
424
,
175
(
2006
).
71.
A.
Arenas
,
A.
Díaz-Guilera
,
J.
Kurths
,
Y.
Moreno
, and
C.
Zhoug
,
Phys. Rep.
469
,
93
(
2008
).
72.
N.
Bertschinger
and
T.
Natschläger
,
Neural Comput.
16
,
1413
(
2004
).
73.
A.
Zumdieck
,
M.
Timme
,
T.
Geisel
, and
F.
Wolf
,
Phys. Rev. Lett.
93
,
244103
(
2004
).
74.
H. F.
Zhang
,
R. X.
Wu
, and
X. C.
Fu
,
Chaos Solitons Fractals
28
,
472
(
2006
).
75.
T.-W.
Ko
and
G. B.
Ermentrout
,
Phys. Rev. E
78
,
026210
(
2008
).
76.
J. C.
Sprott
,
Chaos
18
,
023135
(
2008
).
77.
L.
Büsing
,
B.
Schrauwen
, and
R.
Legenstein
,
Neural Comput.
22
,
1272
(
2010
).
78.
H.
Yang
,
F.
Zhaob
, and
B.
Wang
,
Physica A
364
,
544
(
2006
).
79.
H.
Riecke
,
A.
Roxin
,
S.
Madruga
, and
S. A.
Solla
,
Chaos
17
,
026110
(
2007
).
80.
W. J.
Yuan
,
X. S.
Luo
,
P. Q.
Jiang
,
B. H.
Wang
, and
J. Q.
Fang
,
Chaos Solitons Fractals
37
,
799
(
2008
).
81.
R.
Tönjes
,
N.
Masuda
, and
H.
Kori
,
Chaos
20
,
033108
(
2010
).
82.
W.
Chen
,
X.
Li
,
J.
Pu
, and
Q.
Luo
,
Phys. Rev. E
81
,
061903
(
2010
).
83.
J. H.
Downes
,
M. W.
Hammond
,
D.
Xydas
,
M. C.
Spencer
,
V. M.
Becerra
,
K.
Warwick
,
B. J.
Whalley
, and
S. J.
Nasuto
,
PLoS Comput. Biol.
8
,
e1002522
(
2012
).
84.
W.
de Haan
,
K.
Mott
,
E. C.
van Straaten
,
P.
Scheltens
, and
C. J.
Stam
,
PLoS Comput. Biol.
8
,
e1002582
(
2012
).
85.
C. Y.
Wee
,
P. T.
Yap
,
K.
Denny
,
J. N.
Browndyke
,
G. G.
Potter
,
K. A.
Welsh-Bohmer
,
L.
Wang
, and
D.
Shen
,
PLoS One
7
,
e37828
(
2012
).
86.
P.
Liang
,
J.
Xiang
,
H.
Liang
,
Z.
Qi
, and
K.
Li
,
Curr. Alzheimer Res.
11
,
389
(
2014
).
87.
J.
Sepulcre
,
H.
Liu
,
T.
Talukdar
,
I.
Martincorena
,
B. T.
Yeo
, and
R. L.
Buckner
,
PLoS Comput. Biol.
6
,
e1000808
(
2010
).
88.
H. L.
Lee
,
B.
Zahneisen
,
T.
Hugger
,
P.
LeVan
, and
J.
Hennig
,
Neuroimage
65
,
216
(
2013
).

Supplementary Material

You do not currently have access to this content.