Weakly-nonlinear unidirectional long internal waves in a non-rotating frame are well described by the Korteweg-de Vries equation (KdV). Within the KdV framework, all isolated monochromatic wavetrains are stable to modulational instability. However, analysis of a coupled nonlinear Schrödinger equation system (CNLS) has shown that all systems of two co-propagating monochromatic wavetrains in the KdV are modulationally unstable. To take into account the effect of the background rotation of the Earth on long internal waves, this analysis is extended here to derive the CNLS for the rotation-modified KdV, or Ostrovsky, equation. Rotation stabilises wavetrain pairs when the wavelengths of both waves comprising the wavetrains are longer than the linear wave with maximum group velocity. The particular case when the wavetrains have different wavenumbers but the same linear group speed is emphasised.

1.
L.
Ostrovsky
and
Y. A.
Stepanyants
, “
Do internal solitions exist in the ocean?
,”
Rev. Geophys.
27
,
293
310
, doi: (
1989
).
2.
R.
Grimshaw
,
Advances in Coastal and Ocean Engineering
, edited by
P. L.-F.
Liu
(
World Scientific Publishing Company, Incorporated
,
1997
), Chap. I, pp.
1
30
.
3.
K. R.
Helfrich
and
W. K.
Melville
, “
Long nonlinear internal waves
,”
Annu. Rev. Fluid Mech.
38
,
395
425
(
2006
).
4.
J. R.
Apel
,
L. A.
Ostrovsky
,
Y. A.
Stepanyants
, and
J. F.
Lynch
, “
Internal solitons in the ocean and their effect on underwater sound
,”
J. Acoust. Soc. Am.
121
,
695
722
(
2007
).
5.
T.
Stanton
and
L.
Ostrovsky
, “
Observations of highly nonlinear internal solitons over the continental shelf
,”
Geophys. Res. Lett.
25
,
2695
2698
, doi: (
1998
).
6.
L.
Ostrovsky
and
Y.
Stepanyants
, “
Nonlinear surface and internal waves in rotating fluids
,” in
Nonlinear Waves 3
, Research Reports in Physics, edited by
A.
Gaponov-Grekhov
,
M.
Rabinovich
, and
J.
Engelbrecht
(
Springer Berlin Heidelberg
,
1990
), pp.
106
128
.
7.
R.
Grimshaw
,
L.
Ostrovsky
,
V.
Shrira
, and
Y.
Stepanyants
, “
Long nonlinear surface and internal gravity waves in a rotating ocean
,”
Surv. Geophys.
19
,
289
338
(
1998
).
8.
L. A.
Ostrovsky
, “
Nonlinear internal waves in a rotating ocean
,”
Oceanology
18
,
199
125
(
1978
).
9.
R. H. J.
Grimshaw
,
J.-M.
He
, and
L. A.
Ostrovsky
, “
Terminal damping of a solitary wave due to radiation in rotational systems
,”
Stud. Appl. Math.
101
,
197
210
(
1998
).
10.
A. J.
Whitfield
and
E. R.
Johnson
, “
Rotation-induced nonlinear wavepackets in internal waves
,”
Phys. Fluids
26
,
056606
(
2014
).
11.
A.
Alias
,
R. H. J.
Grimshaw
, and
K. R.
Khusnutdinova
, “
Coupled Ostrovsky equations for internal waves in a shear flow
,”
Phys. Fluids
26
,
126603
(
2014
).
12.
A.
Alias
,
R. H. J.
Grimshaw
, and
K. R.
Khusnutdinova
, “
On strongly interacting internal waves in a rotating ocean and coupled Ostrovsky equations
,”
Chaos
23
,
023121
(
2013
).
13.
E. F.
Thompson
, “
Energy spectra in shallow US coastal waters
,” Tech. Rep. (DTIC Document,
1980
).
14.
M.
Onorato
,
D.
Ambrosi
,
A.
Osborne
, and
M.
Serio
, “
Interaction of two quasi-monochromatic waves in shallow water
,”
Phys. Fluids
15
,
3871
3874
(
2003
).
15.
T. B.
Benjamin
and
J. E.
Feir
, “
The disintegration of wave trains on deep water
,”
J. Fluid Mech
27
,
417
430
(
1967
).
16.
R.
Grimshaw
and
K.
Helfrich
, “
Long-time solutions of the Ostrovsky equation
,”
Stud. Appl. Math.
121
,
71
88
(
2008
).
17.
V. E.
Zakharov
, “
Stability of periodic waves of finite amplitude on the surface of a deep fluid
,”
J. Appl. Mech. Tech. Phys.
9
,
190
194
(
1968
).
18.
S.
Griffiths
,
R.
Grimshaw
, and
K.
Khusnutdinova
, “
Modulational instability of two pairs of counter-propagating waves and energy exchange in a two-component system
,”
Physica D
214
,
1
24
(
2006
).
19.
L. N.
Trefethen
,
Spectral Methods in MATLAB
(
Society for Industrial and Applied Mathematics
,
2000
), Vol.
10
, p.
111
.
20.
J. R.
Cash
and
A. H.
Karp
, “
A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides
,”
ACM Trans. Math. Software
16
,
201
222
(
1990
).
You do not currently have access to this content.